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Schedule
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9:00 - 9:30 Introduction 

9:30 - 10:15 Distributed Machine Learning (Nina Balcan) 

10:15 - 11:00 Randomized Composable Coresets (Vahab Mirrokni) 

11:00 - 11:30 Coffee Break

11:30 - 12:15 Algorithms for Graphs on V. Large Number of Nodes (Krzysztof Onak) 

12:15 - 2:15 Lunch (on your own) 

2:15 - 3:00 Massively Parallel Communication and Query Evaluation (Paul Beame)  

3:00 - 3:30 Graph Clustering in a few Rounds (Ravi Kumar) 

3:30 - 4:00 Coffee Break

4:00 - 4:45 Sample & Prune: For Submodular Optimization (Ben Moseley) 

4:45 - 5:00 Conclusion & Discussion 



Modern Parallelism (Practice) 
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Modern Parallelism (Theory)
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Bird’s Eye View

– 0. Input is partitioned across many machines 
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Bird’s Eye View

– 0. Input is partitioned across many machines 

Computation proceeds in synchronous rounds. In every round, 
every machine:
– 1. Receives data 
– 2. Does local computation on the data it has 
– 3. Sends data out to others 
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Bird’s Eye View

– 0. Input is partitioned across many machines 

Computation proceeds in synchronous rounds. In every round, 
every machine:
– 1. Receives data 
– 2. Does local computation on the data it has 
– 3. Sends data out to others 

Success Measures:
– Number of Rounds 
– Total work, speedup
– Communication 
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Devil in the Details

0. Data partitioned across machines
– Either randomly or arbitrarily
– How many machines? 
– How much slack in the system? 
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Devil in the Details

0. Data partitioned across machines
1. Receive Data
– How much data can be received? 
– Bounds on data received per link (from each machine) or in total. 
– Often called ‘memory,’ or ‘space.’ 
– Denoted by 

– Has emerged as an important parameter. 
– Lower and upper bounds with this as a parameter
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Devil in the Details

0. Data partitioned across machines
1. Receive Data
2. Do local processing 
– Relatively uncontroversial 
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Devil in the Details

0. Data partitioned across machines
1. Receive Data
2. Do local processing 
3. Send data to others 
– How much data to send? Limitations per link? per machine? For the whole 

system? 
– Which machines to send it to? Any? Limited topology?
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Devil in the Details

0. Data partitioned across machines
1. Receive Data
2. Do local processing 
3. Send data to others 

Different parameter settings lead to different models.
– Receive          , poly machines, all connected: PRAM
– Receive, send unbounded, specific network topology: LOCAL
– Receive          , send         ,    machines, specific topology: CONGEST
– Receive               ,        machines, all connected: MPC(1) 
– Receive               ,           machines, all connected: MRC
– ...
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Details: Success Metrics

Number of Rounds:
– Well established 
– Few (if any?) trade-offs on number of rounds vs. computation per round 

Work Efficiency 
– Important ! 
– See “Scalability! But at What COST? [McSherry, Isard, Murray `15] 

Communication
– Matrix transpose -- linear communication yet very efficient 
– Care more about skew, limited by input size
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Consensus Emerging:  

Parameters:
– Problem size : 
– Per machine, per round input size : 

Metric:
– Number of rounds: 
– Ideal:          - e.g. group by key 
– Sometimes                   : sorting, dense connectivity
– Less ideal                          : sparse connectivity
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Simulations 

Theorem: Every round of an EREW PRAM Algorithm can be 
simulated with two rounds. 
– Direct extensions to CREW, CRCW Algorithms 

Proof Idea: 
– Divide the shared memory of the PRAM among the machines, and simulate 

updates. 

15



Simulations (cont)  

Proof Idea: 
– Divide the shared memory of the PRAM among the machines. Perform 

computation in one round, update memory in next. 
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Simulations (cont) 

Proof Idea: 
– Have “memory” machines and “compute machines.” 
– Memory machines simulate PRAM’s shared memory 
– Compute machines update the state 

– EREW PRAM: Every at most two outputs & inputs (one for memory, one for 
compute) 
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Simulations (cont) 

Proof Idea: 
– Have “memory” machines and “compute machines.” 
– Memory machines simulate PRAM’s shared memory 
– Compute machines update the state 

– EREW PRAM: Every at most two outputs & inputs (one for memory, one for 
compute) 
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Simulations (cont) 

Proof Idea: 
– Have “memory” machines and “compute machines.” 
– Memory machines simulate PRAM’s shared memory 
– Compute machines update the state 

– EREW PRAM: Every at most two outputs & inputs (one for memory, one for 
compute) 
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Simulations (cont) 

Proof Idea: 
– Have “memory” machines and “compute machines.” 
– Memory machines simulate PRAM’s shared memory 
– Compute machines update the state 

– EREW PRAM: Every at most two outputs & inputs (one for memory, one for 
compute) 
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Simulations 

Theorem: Every round of an EREW PRAM Algorithm can be 
simulated with two rounds. 
– Direct extensions to CREW, CRCW Algorithms 

But, stronger than PRAMs.
– Subset sum. Given an array    , compute                          for all  . 
– Requires                 rounds in PRAM
– Can be done in                  rounds with space 
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Algorithms 

One Technique: Coresets! 
– Reduce input size from    to   in parallel 
– Solve the problem in a single round on one machine

Very Practical! 
–    : Peta/Tetabytes
–               : Giga/Megabytes 

Talks today about coresets for: 
– Clustering: k-means, k-median, k-center, correlation   
– Graph Problems: connectivity, matchings 
– Submodular Maximization 
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Lower Bounds

Some progress! 
– Good bounds on what is computable in one round 
– Multi-round lower bounds for restricted models (talks today) 

Canonical problem:
– Given a two-regular graph, decide if it is connected or not. 
– Best upper bounds                for                 
– Best lower bounds                  by circuit complexity reductions.

• To improve must take number of machines into consideration 
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