
Algorithmic Frontiers of Modern
Massively Parallel Computation

Introduction

Ashish Goel, Sergei Vassilvitskii, Grigory Yaroslavtsev
June 14, 2015

Schedule

2

9:00 - 9:30 Introduction

9:30 - 10:15 Distributed Machine Learning (Nina Balcan)

10:15 - 11:00 Randomized Composable Coresets (Vahab Mirrokni)

11:00 - 11:30 Coffee Break

11:30 - 12:15 Algorithms for Graphs on V. Large Number of Nodes (Krzysztof Onak)

12:15 - 2:15 Lunch (on your own)

2:15 - 3:00 Massively Parallel Communication and Query Evaluation (Paul Beame)

3:00 - 3:30 Graph Clustering in a few Rounds (Ravi Kumar)

3:30 - 4:00 Coffee Break

4:00 - 4:45 Sample & Prune: For Submodular Optimization (Ben Moseley)

4:45 - 5:00 Conclusion & Discussion

Modern Parallelism (Practice)

3

`91 MPI

2005 2010 `14

MapReduce

Hadoop

Pregel

Spark

GraphLab

Storm
S4

GiraphHive

BigQuery

Pig

Mahout
EC2 Azure GCE

*All dates approximate

Naiad

Modern Parallelism (Theory)

4

2007 2012 2015

`90 BSP

 PRAM

MUD
MRC MR

MPC(1)

Key-Complexity
IO-MR

MPC(2)

Big Data

Coordinator`03 Congested Clique
`00 Local

* Plus Streaming, External Memory, and others

Bird’s Eye View

– 0. Input is partitioned across many machines

5

Bird’s Eye View

– 0. Input is partitioned across many machines

Computation proceeds in synchronous rounds. In every round,
every machine:
– 1. Receives data
– 2. Does local computation on the data it has
– 3. Sends data out to others

6

Bird’s Eye View

– 0. Input is partitioned across many machines

Computation proceeds in synchronous rounds. In every round,
every machine:
– 1. Receives data
– 2. Does local computation on the data it has
– 3. Sends data out to others

Success Measures:
– Number of Rounds
– Total work, speedup
– Communication

7

Devil in the Details

0. Data partitioned across machines
– Either randomly or arbitrarily
– How many machines?
– How much slack in the system?

8

Devil in the Details

0. Data partitioned across machines
1. Receive Data
– How much data can be received?
– Bounds on data received per link (from each machine) or in total.
– Often called ‘memory,’ or ‘space.’
– Denoted by

– Has emerged as an important parameter.
– Lower and upper bounds with this as a parameter

9

M,m, µ, s, n/p1�✏

Devil in the Details

0. Data partitioned across machines
1. Receive Data
2. Do local processing
– Relatively uncontroversial

10

Devil in the Details

0. Data partitioned across machines
1. Receive Data
2. Do local processing
3. Send data to others
– How much data to send? Limitations per link? per machine? For the whole

system?
– Which machines to send it to? Any? Limited topology?

11

Devil in the Details

0. Data partitioned across machines
1. Receive Data
2. Do local processing
3. Send data to others

Different parameter settings lead to different models.
– Receive , poly machines, all connected: PRAM
– Receive, send unbounded, specific network topology: LOCAL
– Receive , send , machines, specific topology: CONGEST
– Receive , machines, all connected: MPC(1)
– Receive , machines, all connected: MRC
– ...

12

Õ(1)

Õ(1) Õ(1) n

s = n/p1�✏ p

n1�✏s = n1�✏

Details: Success Metrics

Number of Rounds:
– Well established
– Few (if any?) trade-offs on number of rounds vs. computation per round

Work Efficiency
– Important !
– See “Scalability! But at What COST? [McSherry, Isard, Murray `15]

Communication
– Matrix transpose -- linear communication yet very efficient
– Care more about skew, limited by input size

13

Consensus Emerging:

Parameters:
– Problem size :
– Per machine, per round input size :

Metric:
– Number of rounds:
– Ideal: - e.g. group by key
– Sometimes : sorting, dense connectivity
– Less ideal : sparse connectivity

14

n

s

r(s, n)

O(1)

⇥(logs n)

O(poly log n)

Simulations

Theorem: Every round of an EREW PRAM Algorithm can be
simulated with two rounds.
– Direct extensions to CREW, CRCW Algorithms

Proof Idea:
– Divide the shared memory of the PRAM among the machines, and simulate

updates.

15

Simulations (cont)

Proof Idea:
– Divide the shared memory of the PRAM among the machines. Perform

computation in one round, update memory in next.

16

Memory: 0 1 0 0 1

0 1 0 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 1

0 0 0 1 1

Simulations (cont)

Proof Idea:
– Have “memory” machines and “compute machines.”
– Memory machines simulate PRAM’s shared memory
– Compute machines update the state

– EREW PRAM: Every at most two outputs & inputs (one for memory, one for
compute)

17

0 1 0 0 1 0 0 0 1 0 0 0 0 1 1

Simulations (cont)

Proof Idea:
– Have “memory” machines and “compute machines.”
– Memory machines simulate PRAM’s shared memory
– Compute machines update the state

– EREW PRAM: Every at most two outputs & inputs (one for memory, one for
compute)

18

0 1 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1 0 0 1 0 0 0 1 0 0 0 0 1 1

Simulations (cont)

Proof Idea:
– Have “memory” machines and “compute machines.”
– Memory machines simulate PRAM’s shared memory
– Compute machines update the state

– EREW PRAM: Every at most two outputs & inputs (one for memory, one for
compute)

19

0 1 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1 0 0 1 0 0 0 1 0 0 0 0 1 1

Simulations (cont)

Proof Idea:
– Have “memory” machines and “compute machines.”
– Memory machines simulate PRAM’s shared memory
– Compute machines update the state

– EREW PRAM: Every at most two outputs & inputs (one for memory, one for
compute)

20

0 1 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1 0 0 0 0 0 0 1 0 0 0 0 1 1

Simulations

Theorem: Every round of an EREW PRAM Algorithm can be
simulated with two rounds.
– Direct extensions to CREW, CRCW Algorithms

But, stronger than PRAMs.
– Subset sum. Given an array , compute for all .
– Requires rounds in PRAM
– Can be done in rounds with space

21

A B[i] =
iX

j=0

A[j] i

O(log n)

O(logs n) s

Algorithms

One Technique: Coresets!
– Reduce input size from to in parallel
– Solve the problem in a single round on one machine

Very Practical!
– : Peta/Tetabytes
– : Giga/Megabytes

Talks today about coresets for:
– Clustering: k-means, k-median, k-center, correlation
– Graph Problems: connectivity, matchings
– Submodular Maximization

22

s ⇡
p
n

n

n s

Lower Bounds

Some progress!
– Good bounds on what is computable in one round
– Multi-round lower bounds for restricted models (talks today)

Canonical problem:
– Given a two-regular graph, decide if it is connected or not.
– Best upper bounds for
– Best lower bounds by circuit complexity reductions.

• To improve must take number of machines into consideration

23

O(log n) s = o(n)

⌦(logs n)

Schedule

24

9:00 - 9:30 Introduction

9:30 - 10:15 Distributed Machine Learning (Nina Balcan)

10:15 - 11:00 Randomized Composable Coresets (Vahab Mirrokni)

11:00 - 11:30 Coffee Break

11:30 - 12:15 Algorithms for Graphs on V. Large Number of Nodes (Krzysztof Onak)

12:15 - 2:15 Lunch (on your own)

2:15 - 3:00 Massively Parallel Communication and Query Evaluation (Paul Beame)

3:00 - 3:30 Graph Clustering in a few Rounds (Ravi Kumar)

3:30 - 4:00 Coffee Break

4:00 - 4:45 Sample & Prune: For Submodular Optimization (Ben Moseley)

4:45 - 5:00 Conclusion & Discussion

References: Models
BSP: Valiant. A bridging model for parallel computation. Communications ACM
1990.
MUD: Feldman, Muthukrishnan, Sidiropoulos, Stein, Svitkina. On Distributing
Symmetric Streaming Computations. ACM TALG 2010.
MRC: Karloff, Suri, Vassilvitskii. A Model of Computation for MapReduce,
SODA 2010.
IO-MR: Goodrich, Sitchinava, Zhang. Sorting, Searching, and Simulation in the
MapReduce Framework. ISAAC 2011.
Key-Complexity: Goel, Munagala. Complexity Measures for MapReduce, and
Comparison to Parallel Sorting. ArXiV 2012.
MR: Pietracaprina, Pucci, Riondato, Silvestri, Upfal. Space Round Tradeoffs for
MapReduce Computations. ICS 2012
MPC(1): Beame, Koutris, Suciu. Communication Steps for Parallel Query
Processing. PODS 2013.
MPC(2): Andoni, Nikolov, Onak, Yaroslavtsev. Parallel Algorithms for Geometric
Graph Problems. STOC 2014.
Big Data: Klauck, Nanongkai, Pandurangan, Robinson. Distributed
Computation of Large Scale Graph Problems. SODA 2015

