Linear sketching with parities

Grigory Yaroslavtsev

http://grigory.us

with Sampath Kannan (Penn) and Elchanan Mossel (MIT)

Linear sketching with parities

- Input $x \in \{0,1\}^n$
- Parity = Linear function over GF_2 : $\bigoplus_{i \in S} x_i$
- E.g. $x_4 \oplus x_2 \oplus x_{42}$
- Deterministic linear sketch: set of k parities:

$$\ell(\mathbf{x}) = \bigoplus_{i_1 \in S_1} x_{i_1}; \bigoplus_{i_2 \in S_2} x_{i_2}; \dots; \bigoplus_{i_k \in S_k} x_{i_k}$$

• Randomized linear sketch: distribution over k parities (random $S_1, S_2, ..., S_k$):

$$\ell(\mathbf{x}) = \bigoplus_{i_1 \in \mathbf{S_1}} x_{i_1}; \bigoplus_{i_2 \in \mathbf{S_2}} x_{i_2}; \dots; \bigoplus_{i_k \in \mathbf{S_k}} x_{i_k}$$

Linear sketching over GF_2

- Given $f(x): \{0,1\}^n \to \{0,1\}$
- Question:

Can one compute f(x) from a small ($k \ll n$) linear sketch over GF_2 ?

Allow randomized computation (99% success)

Motivation: Distributed Computing

Distributed computation among M machines:

$$-x=(x_1,x_2,...,x_M)$$
 (more generally $x=\bigoplus_{i=1}^M x_i$)

— M machines can compute sketches locally:

$$\ell(x_1), \ldots, \ell(x_M)$$

– Send them to the coordinator who computes:

$$\ell_i(x) = \ell_i(x_1) \oplus \cdots \oplus \ell_i(x_M)$$
 (coordinate-wise XORs)

- Coordinator computes f(x) with kM communication

Motivation: Streaming

x generated through a sequence of updates

• Updates i_1, \dots, i_m : update i_t flips bit at position i_t

 $\ell(x)$ allows to compute f(x) with k bits of space

Deterministic vs. Randomized

Fact: f has a deterministic sketch if and only if

$$-f = g(\bigoplus_{i_1 \in S_1} x_{i_1}; \bigoplus_{i_2 \in S_2} x_{i_2}; \dots; \bigoplus_{i_k \in S_k} x_{i_k})$$

– Equivalent to "f has Fourier dimension k"

Randomization can help:

- $-\mathbf{OR}: f(x) = x_1 \vee \cdots \vee x_n$
- Has "Fourier dimension" = n
- Pick $t = \log 1/\delta$ random sets S_1, \dots, S_t
- If there is j such that $\bigoplus_{i \in S_j} x_i = 1$ output 1, otherwise output 0
- Error probability 6

Fourier Analysis

- $f(x_1, ..., x_n): \{0,1\}^n \to \{0,1\}$
- Notation switch:
 - $-0 \rightarrow 1$
 - $-1 \rightarrow -1$
- $f': \{-1,1\}^n \to \{-1,1\}$
- Functions as vectors form a vector space:

$$f: \{-1,1\}^n \to \{-1,1\} \Leftrightarrow f \in \{-1,1\}^{2^n}$$

• Inner product on functions = "correlation":

$$\langle f, g \rangle = 2^{-n} \sum_{x \in \{-1,1\}^n} f(x)g(x) = \mathbb{E}_{x \sim \{-1,1\}^n} [f(x)g(x)]$$

$$||f||_2 = \sqrt{\langle f, f \rangle} = \sqrt{\mathbb{E}_{x \sim \{-1,1\}^n}[f^2(x)]} = 1$$
 (for Boolean only)

"Main Characters" are Parities

- For $S \subseteq [n]$ let character $\chi_S(x) = \prod_{i \in S} x_i$
- Fact: Every function $f: \{-1,1\}^n \to \{-1,1\}$ uniquely represented as multilinear polynomial

$$f(x_1, ..., x_n) = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S(x)$$

- $\hat{f}(S)$ a.k.a. Fourier coefficient of f on S
- $\widehat{f}(S) \equiv \langle f, \chi_S \rangle = \mathbb{E}_{x \sim \{-1,1\}^n} [f(x)g(x)]$
- $\sum_{S} \hat{f}(S)^2 = 1$ (Parseval)

Fourier Dimension

- Fourier sets $S \equiv \text{vectors in } \mathbb{G}F_2^n$
- "f has Fourier dimension k" = a k-dimensional subspace in Fourier domain has all weight

$$\sum_{\mathbf{S}\subseteq A_{\mathbf{k}}}\widehat{f}(\mathbf{S})^2=1$$

$$f(x_1, \dots, x_n) = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S(x) = \sum_{S \subseteq A_k} \hat{f}(S) \chi_S(x)$$

- Pick a basis S_1, \dots, S_k in A_k :
 - Sketch: $\chi_{S_1}(x), \dots, \chi_{S_k}(x)$
 - For every $S \in A_k$ there exists $Z \subseteq [k]$: $S = \bigoplus_{i \in Z} S_i$ $\chi_S(x) = \bigoplus_{i \in Z} \chi_{S_i}(x)$

Deterministic Sketching and Noise

Suppose "noise" has a bounded norm

$$f = k$$
-dim.+ noise

- L_0 -noise in the Fourier domain (via [Sanyal'15])
 - $-\hat{f} = k$ -dim. + "Fourier L_0 -noise"
 - Linear sketch size: $\mathbf{k} + O(||\widehat{noise}||_0^{1/2})$
 - Our work: can't be improved even with randomness, e.g for ``addressing function''.

How Randomization Handles Noise

- L_0 -noise in the original domain (hashing a la OR)
 - -f = k-dim. + " L_0 -noise"
 - Linear sketch size: \mathbf{k} + O($\log ||noise||_0$)
 - Optimal (but only existentially, i.e. $\exists f: ...$)
- L_1 -noise in the Fourier domain (via [Grolmusz'97])
 - $-\hat{f} = k$ -dim. + "Fourier L_1 -noise"
 - Linear sketch size: $\mathbf{k} + O(||\widehat{noise}||_{1}^{2})$
 - Example = k-dim. + small decision tree / DNF / etc.

Randomized Sketching: Hardness

- k -dimensional affine extractors require k:
 - f is an affine-extractor for dim. k if any restriction on a k-dim. affine subspace has values 0/1 w/prob. ≥ 0.1 each
 - Example (inner product): $f(x) = \bigoplus_{i=1}^{n/2} x_{2i-1}x_{2i}$
- Not γ -concentrated on k-dim. Fourier subspaces
 - For $\forall k$ -dim. Fourier subspace A:

$$\sum_{S \notin A} \hat{f}(S)^2 \ge 1 - \gamma$$

- Any k -dim. linear sketch makes error $\frac{1}{2} \frac{\sqrt{\gamma}}{2}$
- Converse doesn't hold, i.e. concentration is not enough

Randomized Sketching: Hardness

- Not γ -concentrated on o(n)-dim. Fourier subspaces:
 - Almost all **symmetric functions**, i.e. $f(x) = h(\sum_i x_i)$
 - If not Fourier-close to constant or $\bigoplus_{i=1}^n x_i$
 - E.g. Majority (not an extractor even for $O(\sqrt{n})$)
 - Tribes (balanced DNF)
 - Recursive majority: $Maj^{\circ k} = Maj_3 \circ Maj_3 ... \circ Maj_3$
 - Composition theorem (under some conditions):
 - Ambainis' "Sort function": recursive Sort₄
 - Kushilevitz's "Icosahedron Function": recursive Hex_6

Uniform Distribution + Approx. Dimension

- Not γ -concentrated on k-dim. Fourier subspaces
 - $\forall k$ -dim. Fourier subspace $A: \sum_{S \notin A} \hat{f}(S)^2 \ge 1 \gamma$
 - Any k -dim. linear sketch makes error $\frac{1}{2}(1-\sqrt{\gamma})$
- Definition (Approximate Fourier Dimension)
 - $-\dim_{\gamma}(f) = \text{largest } d \text{ such that } f \text{ is not } \gamma \text{-concentrated}$ on any Fourier subspace of dimension d
- Over uniform distribution $(\dim_{1-\epsilon}(f) + 1)$ -dimensional sketch is enough for error $\leq \epsilon$:
 - $-\operatorname{Fix}\left(\dim_{1-\epsilon}(f)+1\right)$ -dimensional $A:\sum_{S\in A}\widehat{f}(S)^2\geq 1-\epsilon$
 - Output: $g(x) = \text{sign}(\sum_{S \in A} \hat{f}(S) \chi_S(x))$:

$$\Pr_{x \sim U(\{-1,1\}^n)} [g(x) = f(x)] \ge 1 - \epsilon$$

Sketching over Uniform Distribution

 $\mathfrak{D}^{1,U}_{\delta}(f) = \text{bit-complexity of the best compression scheme}$ allowing to compute f with err. δ over uniform distribution $\dim_{\gamma}(f) = \text{largest } d$ such that f is not γ -concentrated on any Fourier subspace of dimension d

Thm: If
$$\epsilon_2 > \epsilon_1 > 0$$
, $\dim_{\epsilon_1}(f) = \dim_{\epsilon_2}(f) = d - 1$ then: $\mathfrak{D}^{1,U}_{\delta}(f) \geq d$,

where $\delta = (\epsilon_2 - \epsilon_1)/4$.

Corollary: If $\hat{f}(\emptyset) < C$ for C < 1 then there exists d:

$$\mathfrak{D}_{\Theta\left(\frac{1}{n}\right)}^{1,U}(f) \geq \mathbf{d}.$$

This is optimal up to error as d-dim. sketch has error $1 - \epsilon_2$

Example: Majority

Majority function:

$$Maj_n(z_1, ..., z_n) \equiv \sum_{i=1}^n z_i \ge n/2$$

- $\widehat{Maj}_n(S)$ only depends on |S|
- $\widehat{Maj}_n(S) = 0$ if |S| is odd

•
$$W^{k}(Maj_{n}) = \sum_{S:|S|=k} \widehat{Maj}_{n}(S) = \alpha k^{-\frac{3}{2}} \left(1 \pm O\left(\frac{1}{k}\right)\right)$$

• (n-1)-dimensional subspace with most weight:

$$A_{n-1} = span(\{1\}, \{2\}, ..., \{n-1\})$$

•
$$\sum_{S \in A_{n-1}} \widehat{Maj}_n(S) = 1 - \frac{\gamma}{\sqrt{n}} \pm O(n^{-3/2})$$

• Set
$$\epsilon_2 = 1 - O(n^{-3/2})$$
, $\epsilon_1 = 1 - \frac{\gamma}{\sqrt{n}} + O(n^{-3/2})$

$$\mathfrak{D}_{O(1/\sqrt{n})}^{1,U}(Maj_n) \geq n$$

Application: Random Streams

- $x \in \{0,1\}^n$ generated via a stream of updates
- Each update randomly flips a random coordinate
- Goal: maintain g(x) during the stream (error ϵ)
- Question: how much space necessary?
- Answer: $\mathfrak{D}_{\epsilon}^{1,U}$ and best algorithm is linear sketch
 - -x after first $O(n \log n)$ updates input is uniform
- Big open question:
 - Is the same true if distribution is not uniform?
 - True for very long streams, how about short ones?

1-way Communication Complexity of **XOR-functions**

Shared randomness

- - $f(z) = OR_{i=1}^{n}(z_i) \Rightarrow \text{(not) Equality}$
 - $f(z) = (||z||_0 > d) \Rightarrow \text{Hamming Distance} > d$
- $R_{\epsilon}^{1}(f)$ = min.|M| so that Bob's error prob. ϵ

Communication Complexity of XOR-functions

- Well-studied (often for 2-way communication):
 - [Montanaro, Osborne], ArXiv'09
 - [Shi, Zhang], QIC'09,
 - [Tsang, Wong, Xie, Zhang], FOCS'13
 - [O'Donnell, Wright, Zhao, Sun, Tan], CCC'14
 - [Hatami, Hosseini, Lovett], FOCS'16
- Connections to log-rank conjecture [Lovett'14]:
 - Even special case for XOR-functions still open

Deterministic 1-way Communication Complexity of XOR-functions

Alice: $x \in \{0,1\}^n$ M(x) $f(x \oplus y)$

- $D^1(f) = \min.|M|$ so that Bob is always correct
- [Montanaro-Osborne'09]: $D^1(f) = D^{lin}(f)$
- $D^{lin}(f) = \text{deterministic lin. sketch complexity of } f$
- $D^1(f) = D^{lin}(f) =$ "Fourier dimension of f"

1-way Communication Complexity of XOR-functions

Shared randomness

- $R_{\epsilon}^{1}(f)$ = min. |M| so that Bob's error prob. ϵ
- $R_{\epsilon}^{lin}(f) = \text{rand. lin. sketch complexity (error } \epsilon)$
- $R_{\epsilon}^1(f) \leq R_{\epsilon}^{lin}(f)$
- Question: $R_{\epsilon}^{1}(f) \approx R_{\epsilon}^{lin}(f)$? (true for symmetric)

Distributional 1-way Communication under Uniform Distribution

Alice: $x \sim U(\{0,1\}^n)$

Bob: $y \sim U(\{0,1\}^n)$

- $\mathfrak{D}_{\epsilon}^{1,U}(f) = \min.|M|$ so that Bob's error prob. ϵ is over the uniform distribution over (x, y)
- Enough to consider deterministic messages only
- Motivation: streaming/distributed with random input

•
$$R_{\epsilon}^{1}(\mathbf{f}) = \sup_{D} \mathfrak{D}_{\epsilon}^{1,D}(\mathbf{f})$$

$\mathfrak{D}_{\epsilon}^{1,U}$ and Approximate Fourier Dimension

Thm: If
$$\epsilon_2 > \epsilon_1 > 0$$
, $\dim_{\epsilon_1}(f) = \dim_{\epsilon_2}(f) = d - 1$ then: $\mathfrak{D}^{1,U}_{\delta}(f) \geq d$,

where $\delta = (\epsilon_2 - \epsilon_1)/4$.

$\mathfrak{D}_{\epsilon}^{1,U}$ and Approximate Fourier Dimension

- If |M(x)| = d 1 average "rectangle" size = 2^{n-d+1}
- A subspace A distinguishes x_1 and x_2 if:

$$\exists S \in A : \chi_S(x_1) \neq \chi_S(x_2)$$

- Fix a d-dim. subspace A_d : typical x_1 and x_2 in a typical "rectangle" are distinguished by A_d
- Lem: If a d-dim. subspace A_d distinguishes x_1 and x_2 +
- 1) f is ϵ_2 -concentrated on A_d
- 2) f not ϵ_1 -concentrated on any (d-1)-dim. subspace

$$\Pr_{z \sim U(\{-1,1\}^n)} [f_{x_1}(z) \neq f_{x_2}(z)] \ge \epsilon_2 - \epsilon_1$$

$\mathfrak{D}_{\epsilon}^{1,U}$ and Approximate Fourier Dimension

Thm: If
$$\epsilon_2 > \epsilon_1 > 0$$
, $\dim_{\epsilon_1}(f) = \dim_{\epsilon_2}(f) = d - 1$ then: $\mathfrak{D}^{1,U}_{\delta}(f) \geq d$,

Where $\delta = (\epsilon_2 - \epsilon_1)/4$.

$$\Pr_{z \sim U(\{-1,1\}^n)} \left[f_{x_1}(z) \neq f_{x_2}(z) \right] \geq \epsilon_2 - \epsilon_1$$

$$g_{x_1} = 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad R = \text{"typical rectangle"}$$

Error for fixed
$$y = \min(\Pr_{x \in R}[f_x(y) = 0], \Pr_{x \in R}[f_x(y) = 1])$$

Average error for $(x, y) \in R = \Omega(\epsilon_2 - \epsilon_1)$

Thanks! Questions?