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• Publish information 
about a graph 

• Preserve privacy of 
relationships 

Publishing network data 
Many data sets can be represented as a graph: 

• Friendship in online social network 

• Financial transactions  

• Romantic relationships 

 

 

American J. Sociology,   
Bearman, Moody, Stovel 

Naïve approach: 
anonymization 
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Goal:  Publish structural information about a graph 

Publishing network data 

Database Relationships Users 

A 
queries 

answers 

) ( 
Government, 
researchers, 
businesses 

(or)  
Malicious 
adversary 

3 

•   Anonymization not sufficient [Backström, Dwork, Kleinberg 
’07, Narayanan, Shmatikov ’09, Narayanan, Shi, Rubinstein ’11+ 

•   Ideal: Algorithms with rigorous privacy guarantee, no 
assumptions about attacker’s prior information/algorithm 
 

 



• Limits incremental information by hiding 
presence/absence of an individual relationship  

Database Relationships Users 

A 
queries 

answers 

) ( 
Government, 
researchers, 
businesses 

(or)  
Malicious 
adversary 

Differential privacy  
[Dwork, McSherry, Nissim, Smith ’06+ 
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• Neighbors: Graphs G and G’ that differ in one edge 
• Answers on neighboring graphs should be similar 



𝝐-differential privacy (edge privacy) 

For all pairs of neighbors 𝐺, 𝐺′ and all events S: 

 

 

 

 

 

 

Differential privacy for relationships 

𝑃𝑟 𝐴 𝐺 ∈ 𝑺 ≤ 𝑒𝜖 Pr 𝐴 𝐺′ ∈ 𝑺  
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A(G) A(G’) 

• Probability is over the randomness of A 
• Definition requires that the distributions are close: 



For graphs G and H:  # of occurrences of H in G 

Subgraph counts 

Example: 

Total: 40 

Total: 2 

Total: 1 

Triangle: 

2-star: 

2-triangle: 

k-star 

… 
k 

k-triangle 

k 

… 
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• Subgraph counts are used in: 

–  Exponential random graph models 

–  Descriptive graph statistics, e.g.: 
 
     Clustering coefficient  =     
 

 

• Our focus: efficient differentially private 
algorithms for releasing subgraph counts 

 

Subgraph counts 

# 
# 
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Previous work 
• Smooth Sensitivity [Nissim, Raskhodnikova, Smith ‘07+ 

– Differentially private algorithm for triangles 

– Open: private algorithms for other subgraphs? 

• Private queries with joins [Rastogi, Hay, Miklau, Suciu 
‘09+ 

– Works for a wide range of subgraphs 

– Weaker privacy guarantee, applies only for specific 
class of adversaries 

• Private degree sequence [Hay, Li, Miklau, Jensen ’09+ 

– Guarantees differential privacy 

– Works for k-stars, but not for other subgraphs 
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Laplace Mechanism and Sensitivity 
[Dwork, McSherry, Nissim, Smith ‘06+ 

• Add noise: mean = 0, standard deviation ~(𝑺𝒇/𝝐), 

where 𝑺𝒇 is sensitivity => 𝝐-differential privacy: 

 

 

• Local sensitivity (*NRS’07+, not differentially private!): 

 

 

• Previous work (mostly): Global sensitivity 

𝑓′ 𝐺 =  𝑓 𝐺 + 𝐿𝑎𝑝(𝑺𝒇/𝝐) 

𝐿𝑆𝑓 𝐺 = max
𝐺′: 𝐍𝐞𝐢𝐠𝐡𝐛𝐨𝐫 𝑜𝑓 𝐺

𝑓 𝐺 − 𝑓 𝐺′  

𝑺𝒇 = 𝑮𝑺𝒇 = max
𝐺
 𝐿𝑆𝑓(𝐺) ⇒ differentially private! 
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𝑆𝑓
∗(G) 

𝐿𝑆𝑓(G) 

Instance-Specific Noise 
𝑮𝒏 = set of all graphs on n vertices. d(G,G’) = # edges in 
which G and G’ differ. 
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• Add Cauchy noise: median = 0, median absolute value 
∝ 𝑆𝑓,𝛽

∗  (G)/𝜷 (where 𝜷 = 𝑐 ⋅ 𝝐) => 𝝐-differential privacy: 

 
 

• Naïve computation requires exponential time 
• *NRS’07+: Compute smooth sensitivity for triangles 

 

Smooth Sensitivity [Nissim, Raskhodnikova, Smith ’07]: 
 
 

𝑺𝒇,𝜷
∗  (𝑮) = max 

𝐺′∈𝑮𝒏
𝐿𝑆𝑓 𝐺

′ ⋅ 𝑒−𝜷𝒅 𝑮,𝑮
′

 

 

𝑓′ 𝐺 =  𝑓 𝐺 + 𝐶𝑎𝑢𝑐ℎ𝑦(𝑺𝒇,𝜷
∗ /𝜷) 



Our contributions 

• Differentially private algorithms for k-stars and 
k-triangles 

– Efficiently compute smooth sensitivity for k-stars 

– NP-hardness for k-triangles and k-cycles 

– Different approach for k-triangles 

• Average-case analysis in G(n,p)  

• Theoretical comparison with previous work 

• Experimental evaluation 
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Smooth Sensitivity for k-stars (           ) 

This paper: near-linear time algorithm for smooth sensitivity 

• Algorithm also reveals structural results, e.g.: 

– Proposition:  

 If (𝜖 <  1) and (maximum degree > 𝑐𝑜𝑛𝑠𝑡 ⋅ 𝑘/𝜖)   

 then (smooth sensitivity) = (local sensitivity) 

• Algorithm optimal for large class of graphs 

– Proposition: error  >  const ⋅(local sensitivity) 

• Compared to *HLMJ’09+ (private degree sequence): 

– Our error never worse by more than a constant factor 

– For 2-stars, our error can be better by Ω( n/𝜖) factor 
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• High-probability upper bound on local sensitivity 
• If 𝐿𝑆𝑓(𝐺) is large, but its local sensitivity LS’ is small 

 
 

• 𝐿𝑆 will be (𝜖1, 𝜹𝟏)-differentially private and: 
   
• Gives 𝝐𝟏 + 𝝐𝟐, 𝜹𝟏 + 𝒆

𝝐𝟏𝜹𝟐 -differential privacy 

Private Approximation to Local 
Sensitivity: k-triangles (         ) 

Approximate differential privacy, 𝜖, 𝛿 -privacy 
[Dwork, Kenthapadi, McSherry, Mironov, Naor ‘06+: 
 
 Pr 𝐴 𝐺 ∈ 𝑺 ≤ 𝑒

𝜖 Pr 𝐴 𝐺′ ∈ 𝑺 + 𝛿   

𝐿𝑆 = 𝐿𝑆(𝐺) + 𝐿𝑎𝑝(𝐿𝑆′/𝜖1) + shift 

Pr[𝐿𝑆 ≥ 𝐿𝑆] > 1 − 𝛿2 
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Idea:  Private upper bound on local sensitivity (𝐿𝑆 ). 
Release: 𝐴(𝐺) = (𝐿𝑆 , 𝑓 𝐺 + 𝐿𝑎𝑝(𝐿𝑆 /𝜖)). 

… 

If 

• 𝐿𝑆  is 𝜖-differentially private and  

• Pr 𝐿𝑆 ≥ 𝐿𝑆 ≥ 1 − 𝛿  

Then  A is (2𝜖, 𝑒𝜖𝛿)-differentially private. 



Evaluating our algorithms 

• Theoretical evaluation in G(n,p) model 

– All of our algorithms have relative error -> 0  
when the average degree = 𝒏𝒑 grows 

• Empirical evaluation 

– Synthetic graphs from G(n,p) model 

– Variety of real data sets 
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Experimental results for G(n,p) 
• Comparison with previous work for 𝐩 =

𝐥𝐨𝐠 𝒏

𝒏
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Experimental results for G(n,p) 
• Comparison with previous work for 𝐩 =

𝐥𝐨𝐠 𝒏

𝒏
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Experimental results for G(n,p) 
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Experimental results (SNAP) 
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Experimental results (SNAP) 
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Summary 

• Private algorithms for subgraph counts 

– Rigorous privacy guarantee (differential privacy) 

– Running time close to best algorithms for computing 
the subgraph counts 

• Improvement in accuracy and (for some graph 
counts) in privacy over previous work 

• Techniques: 

– Fast computation of smooth sensitivity 

– Differentially private upper bound on local sensitivity 
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