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Publishing network data

Many data sets can be represented as a graph:
* Friendship in online social network
* Financial transactions
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Publishing network data

Goal: Publish structural information about a graph
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ii adversary

* Anonymization not sufficient [Backstrom, Dwork, Kleinberg
’07, Narayanan, Shmatikov ‘09, Narayanan, Shi, Rubinstein "11]

* ldeal: Algorithms with rigorous privacy guarantee, no
assumptions about attacker’s prior information/algorithm
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Differential privacy
[Dwork, McSherry, Nissim, Smith "06]

* Limits incremental information by hiding

presence/absence of an individual relationship
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ii adversary

Neighbors: Graphs G and G’ that differ in one edge
Answers on neighboring graphs should be similar



Differential privacy for relationships

e-differential privacy (edge privacy)

For all pairs of neighbors G, G' and all events S:

Pr|A(G) € S| < e€ Pr|A(G') € S]

* Probability is over the randomness of A
e Definition requires that the distributions are close:
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Subgraph counts

For graphs G and H: # of occurrences of Hin G

Example: %

k- star
2-star: % % Total: 40
l
k
k-triangle Triangle: % % Total: 2

Total: 1
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Subgraph counts

e Subgraph counts are used in:
— Exponential random graph models
— Descriptive graph statistics, e.g.:

#Y
#Y

* Our focus: efficient differentially private
algorithms for releasing subgraph counts

Clustering coefficient =



Previous work

* Smooth Sensitivity [Nissim, Raskhodnikova, Smith ‘07]
— Differentially private algorithm for triangles
— Open: private algorithms for other subgraphs?

* Private queries with joins [Rastogi, Hay, Miklau, Suciu
‘09]
— Works for a wide range of subgraphs

— Weaker privacy guarantee, applies only for specific
class of adversaries

* Private degree sequence [Hay, Li, Miklau, Jensen '09]
— Guarantees differential privacy
— Works for k-stars, but not for other subgraphs



Laplace Mechanism and Sensitivity
[Dwork, McSherry, Nissim, Smith ‘06]

Add noise: mean = 0, standard deviation ~(5/€),
where S is sensitivity => e-differential privacy:

f'(G) = f(G) + Lap(Sy/€)
Local sensitivity ([NRS’07], not differentially private!):

LSf(G) - G’:Neign}%)f)r of Glf(G) AR

Previous work (mostly): Global sensitivity
Sf=GSf = max LSy (G) = differentially private!
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Instance-Specific Noise

G,, = set of all graphs on n vertices. d(G,G’) = # edges in
which G and G’ differ.

Smooth Sensitivit sim, Raskhodnikova, Smith "07]:
5jilc]- o-rilce)
’ G'ew,
LS6(G)

B

* Add Cauchy noise: median = 0, median absolute value
X S;,ﬁ (G)/B (where B = c - €) => e-differential privacy:

f'(G) = f(G) + Cauchy(S;g/PB)

* Naive computation requires exponential time
* [NRS’07]: Compute smooth sensitivity for triangles



Our contributions

Differentially private algorithms for k-stars and

k-triangles

— Efficiently compute smooth sensitivity for k-stars
— NP-hardness for k-triangles and k-cycles

— Different approach for k-triangles

Average-case analysis in G(n,p)
Theoretical comparison with previous work
Experimental evaluation
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Smooth Sensitivity for k-stars %\‘)

This paper: near-linear time algorithm for smooth sensitivity
e Algorithm also reveals structural results, e.g.:
— Proposition:
If (¢ < 1)and (maximum degree > const - k/¢€)
then (smooth sensitivity) = (local sensitivity)
e Algorithm optimal for large class of graphs
— Proposition: error > const -(local sensitivity)
e Compared to [HLMJ'09] (private degree sequence):
— Our error never worse by more than a constant factor

— For 2-stars, our error can be better by 1(y/n/€) factor
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Private Approximation to Local

Sensitivity: k-triangles (%)

Approximate differential privacy, (&, §)-privacy
[Dwork, Kenthapadi, McSherry, Mironov, Naor ‘06]:

Prl[A(G) € S| < e*Pr[A(G') € S|+ 6

Idea: Private upper bound on local sensitivity (LS).
Release: A(G) = (LS, f(G) + Lap(LS/¢)).

If
e LS is e-differentially private and
* Pr[lS=LS|=1-6
Then A is (2¢, e€d)-differentially private.
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Evaluating our algorithms

* Theoretical evaluation in G(n,p) model

— All of our algorithms have relative error -> 0
when the average degree = np grows

* Empirical evaluation
— Synthetic graphs from G(n,p) model
— Variety of real data sets
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Experimental results for G(n,p)
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Relative Median Error

Experimental results for G(n,p)
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Relative Median Error

Experimental results for G(n,p)
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Relative Median Error

Experimental results (SNAP)
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Relative Median Error

Experimental results (SNAP)
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Summary

* Private algorithms for subgraph counts
— Rigorous privacy guarantee (differential privacy)

— Running time close to best algorithms for computing
the subgraph counts

* Improvement in accuracy and (for some graph
counts) in privacy over previous work

* Techniques:
— Fast computation of smooth sensitivity
— Differentially private upper bound on local sensitivity



