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Directed Spanner Problem

. k-Spanner [Awerbuch ‘85, Peleg, Shaffer ‘89]

Subset of edges, preserving distances up to a factor k > 1
(stretch k).
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* Problem: Find the sparsest k-spanner of a directed
graph.



Directed Spanners and Their Friends

Unit lengths Transitive-closure spanner
Minimum cost spanner Steiner spanner

O




Applications of spanners

First application: simulating synchronized
protocols in unsynchronized networks [Peleg,
Ullman "89]

Efficient routing [PU’89, Cowen '01, Thorup, Zwick '01,
Roditty, Thorup, Zwick '02 , Cowen, Wagner "04]
Parallel/Distributed/Streaming approximation
algorithms for shortest paths [Cohen 98, Cohen "00,
Elkin’01, Feigenbaum, Kannan, McGregor, Suri, Zhang "08]

Algorithms for approximate distance oracles
[Thorup, Zwick 01, Baswana, Sen "06]



Applications of directed spanners

e Access control hierarchies

* Previous work: [Atallah, Frikken, Blanton, CCCS
‘05; De Santis, Ferrara, Masucci, MFCS'07]

* Solution: TC-spanners [Bhattacharyya, Grigorescu,
Jung, Raskhodnikova, Woodrutf, SODA’09]

 Steiner TC-spanners for access control:

[Berman, Bhattacharyya, Grigorescu, Raskhodnikova,
Woodruff, Y ICALP'11]

* Property testing and property reconstruction
[BGJRW’09; Raskhodnikova "10 (survey)]



Plan

* Approximation algorithms
— Undirected vs. Directed
— Framework for directed case = Sampling + LP

— Randomized rounding
* Directed Spanner
* Unit-length 3-spanner
* Directed Steiner Forest
* Combinatorial bounds on TC-Spanners
— Upper bounds for low-dimensional posets

— Lower bounds via linear programming



Undirected vs. Directed

Trivial lower bound: = edges needed

Every undirected graph has a (2t+1)-spanner

with € 7 edges. [Althofer, Das, Dobkin,
Joseph, Soares ‘93]

Kruskal-like greedy + girth argument

=>¢  approximation

Time/space-etficient constructions of

undirected approximate distance oracles
[Thorup, Zwick, STOC “01]



Undirected vs Directed

* For some directed graphs m(€ ) edges
needed for a k-spanner:

* No space-etficient directed distance oracles:
some graphs require Ny(€ ) space.[ TZ * 0O



Unit-Length Directed k-Spanner

* O(n)-approximation: trivial (whole graph)

Stretch k =2 k=3 k>4
O(n*/3) [EPOOQ]
Previous work | O(logn) | O(n?/3) [BGIJRWOY] O(nl—%)l [BGJRWOO]
[KP94] | O(/n) [BRR10] O(n*~ T772T) [BRR10]
O(y/n) [DK11] O(n?/3)[DK11]
Our work O(n'/3) + undirected! | O(v/n)
Integrality gap | Q(log n) Q(%nl/?’_ﬁ)
[DK11] [DK11]
Q(log n) plog™™*n
Hardness NP-hard quasi-NP-hard
[KO1] [EPOO]




Our U +/€ -approximation

* Paths of stretch at most k for all edges =>
* Classify edges: thick and thin
* Take union of spanners for them

—Thick edges: Sampling

—Thin edges: LP + randomized rounding



Local Graph

* Local graph for an edge (a,b): Induced by
vertices on paths of stretch  Qfrom atob

» Paths of stretch  Qonly use edges in local
graphs

» Thick edges: +/= vertices in their local graph.
Otherwise thin.



Sampling [BGJRW'09, DK11]

Pick/ /=1 ® seed vertices at random
Take in- and out- shortest path trees for each

Handles all thick edges ( /€ vertices in their
local graph) w.h.p.

#ofedges ¢(¢ p) |= N 0 0 t™(/E)8



Key Idea: Antispanners

 Antispanner — subset of edges, whose
removal destrois all paths from a to b of
stretch at most

* Graph is spanner <=> hits all antispanners
* Enough to hit all minimal antispanners for all thin

edges
* It O isnota spanner for an edge (a,b) = 0" O is
an antispanner, can be minimized greedily



Linear Program (~dual to [DK'11])

Hitting-set LP: B v w © & Q¢

®w P
NA
for all minimal antispanners A for all thin edges.

* # of minimal antispanners may be
exponential in /& => Ellipsoid + Separation
oracle

 We will show: +/€ o minimal
antispanners for a fixed thin edge

* Assume that we guessed OPT = the size of
the sparsest k-spanner (at most € values)



Oracle
Hitting-set LP:B v ® 0 0 Y

w P
NA
for all minimal antispanners A for all thin edges.

FEASIBLE SOLUTION

Solution
ELLIPSOID —>» ORACLE
VIOLATED CONSTRAINT (ANTISPANNER)

* We use a randomized oracle => in both cases
oracle fails with exponentially small probability.



Randomized Oracle = Rounding
» Rounding: Take e w.p. 1} =1 E(i/= i [ t & hp)

N \
ﬁom'ze ALL SPANNER VIOLATED

SM

Solution rounding
CONSTRAINT
ELLIPSOID —> ORACLE LARGE SPANNER
ANTISPANNER CONSTRAINT
NOT VIOLATED

SMALL SPANNER: We have a set of edges of
size. B wtO(HE) 00 ™NGHE) wh.p.

. Pr[LARGE SPANNER] A YV by Chernoff.

. Pr[CONSTRAINT NOT VIOLATED] A Vv
(next slide)




Pr[CONSTRAINT NOT VIOLATED]

« Set ™ QN Owe haveOOON Y | EWEI Ewp)
 For a fixed minimal antispanner A, such that
B, w p:

0PY A 1] (P VElEw) Qv B mV "
vA
* #minimal antispanners for a fixed edge W<

#ditferent shortest path trees with root s in a local graph
VE voogV (for a thin edge)

. . . v —/ " ’l' T‘ .
* #minimal antispanners QO&‘/— =>union bound:

Pr[CONSTRAINT NOT VIOLATED] O V"' "



Unit-length 3-spanner

+ 0 ¢ 7 -approximation algorithm
—Sampling 0 &€ T times
— Dual LP + Different randomized rounding
(simplified version of [DK’11])
* Rounding scheme (vertex-based):
— For each vertex 6 N ¢x samplei N [Tip]
— Take all edges (0 D) if
(EGR) G&7 @

— Feasible solution => 3-spanner w.h.p. (see paper)



Approximation wrap-up

* Sampling + LP with randomized rounding

* Improvement for Directed Steiner Forest:
— Cheapest set of edges, connecting pairs (i o)
— Previous: Sampling + similar LP [Feldman,
Kortsarz, Nutov, SODA “09] . Deterministic
rounding gives 0 (¢ 7 )-approximation
—~Wegive U (¢ 7 )-approximation via
randomized rounding



Approximation wrap-up

O(y/= -approximation for Directed Spanner
Small local graphs => better approximation

Can we do better for general graphs?

* Hardness: only excludes polylog(n)-
approximation

e Integrality gap: ¢ = 7 = [DK'11]
Can we do better for specific graphs
* Planar graphs (still NP-hard)?



Transitive-Closure Spanners

Transitive closure TC(G) has an edge from u to v iff
G has a path from u to v

= = = = = = == D =
> > > —> - -

TC()
Hisa k-TC -spanner of G if H is a subgraph of

TE(®) dde- Whispadisteincq (it} Kik ke pannrepath
frondhU(fo)v

Shortcut edge m

consistent with
ordering

2-TC-spanner of G

» Grigorescu, Jung, Raskhodnikova, Woodruff, SODA’09],
generahzmg [Yao 82; Chazelle 87; Alon, Schieber 87, ...]



Applications of TC-Spanners

. Data structures for storing partial products [Yao,
’82; Chazelle '87, Alon, Schieber, 88]

. Constructions of unbounded fan-in circuits
(Chandra, Fortune, Lipton ICALP, STOC’83]

. Property testers for monotonicity and

Lipschitzness [Dodis et al. “99,BGJRW’09; Jha,
Raskhodnikova, FOCS “11]

. Lower bounds for reconstructors for
monotonicity and Lipshitzness [BGJJRW’10, JR'11]

. Efficient key management in access hierarchies

Follow references in [Raskhodnikova "10 (survey)]



Bounds for Steiner TC-Spanners

* No non-trivial upper bound for arbitrary

graphs

FACT: For a random directed
bipartite graph ot density 2,
any Steiner 2-TC-spanner
requires M(I ) edges.




Low-Dimensional Posets

» [ABFF 09&ccess hierarchies alew-
dimensionalposets

 Posetk DAG

 PosetGhas dimensiord if Gcan be
embeddedinto ahypergridof dimensiond
andd is minimum.

(11,00 ‘O is aposetembeddingif for
allafody QO wiff A O Qw.

Hypergrid[a | has ordering
(MBhh)O o iffo

for alli




Main Results

2 0(e1 1 € WERE
m| €| —g

where| is a constant

o 6 &l T Cel TidecC mel 1T¢ 7Tlg
for constantd o for constantd
[DFM 07] @)
@

. Nothing
better known for
largerk.

d is the poset dimension



2-TC-Spanner for [a ]

« A p(so,n=m)
2-TC-spanner with & 1 TaC &1 Teé@dges

We show this is
tight upto »™ for a

° d > 1 (SO, | | ) constant ».

2-TC-spanner with | 1 TIC 1 —) edges
by taking d-wise Cartesian product of 2-TC-
spanners for a line.




Lower Bound Strategy

Write in IP for a minimal-ZGspannet.

OPT 00 00

It Is crucial that the integrality gap of the primal
IS small

ldea: Construct some feasible solution for the
dual => lower bound on OPT.

OPT 00 00 06



IP Formulation

« {0,1}programfor Minimal 2-TGspanner:

minimize
)
subject to: hd O
® N 1600
W N o000
d P loOU

40 O



Dual LP

 Take fractional relaxation of IP and look at its dual:
maximize W

subject to: N ‘| ploOv



Constructing solution to dual LP

« Now we use fact that poset is a hypergrid! BoD U, set
W ,wherew 0 0 is volume of box with

cornersu andyv.

maximize

subject to:




Constructing solution to dual LP

* Now we use fact that poset is a hypergrid! For
6 O, set w wherew U0 0 is

(

)
volume of box with corners U and V.

maximize ) @i T )'7( Zi-
hg o

subject to:




Wrap-up
Upper bound for Steiner 2-TC-spanner
Lower bound for 2-TC-spanner for a hypergrid.

— Technique: find a feasible solution for the dual LP
Lowerboundofmél 11'C Tlg for'Q o
— Combinatorial

— Holds for randomly generated posets, not explicit.

OPEN PROBLEM:

— Can the LP technique give a better lower bound
for Q o?



