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Directed Spanner Problem 
• k-Spanner [Awerbuch ‘85, Peleg, Shäffer ‘89] 

Subset of edges, preserving distances up to a factor k > 1 
(stretch k). 

• Graph '6ȟ% with weights ύḊ Ὁᴼᴙ   

 H(V, ╔╗Ṗ╔): ᶅ όȟὺᶰὉ ὨὭίὸ╗ όȟὺ Ὧẗύόȟὺ 

 

 

 

 

 

• Problem: Find the sparsest k-spanner of a directed 
graph. 



Directed Spanners and Their Friends 



Applications of spanners 

• First application: simulating synchronized 
protocols in unsynchronized networks [Peleg, 

Ullman ’89] 

• Efficient routing [PU’89, Cowen ’01, Thorup, Zwick ’01, 
Roditty, Thorup, Zwick ’02 , Cowen, Wagner ’04] 

• Parallel/Distributed/Streaming approximation 
algorithms for shortest paths [Cohen ’98, Cohen ’00, 
Elkin’01, Feigenbaum, Kannan, McGregor, Suri, Zhang ’08] 

• Algorithms for approximate distance oracles 
[Thorup, Zwick ’01, Baswana, Sen ’06] 

  



Applications of directed spanners 

• Access control hierarchies 

• Previous work: [Atallah, Frikken, Blanton, CCCS 

‘05; De Santis, Ferrara, Masucci, MFCS’07]  

•  Solution: TC-spanners [Bhattacharyya, Grigorescu, 
Jung, Raskhodnikova, Woodruff, SODA’09] 

•  Steiner TC-spanners for access control: 
[Berman, Bhattacharyya, Grigorescu, Raskhodnikova, 
Woodruff, Y’ ICALP’11] 

• Property testing and property reconstruction 
[BGJRW’09; Raskhodnikova ’10 (survey)] 



Plan 

• Approximation algorithms 
– Undirected vs. Directed 

– Framework for directed case = Sampling + LP 

– Randomized rounding  
• Directed Spanner 

• Unit-length 3-spanner 

• Directed Steiner Forest 

• Combinatorial bounds on TC-Spanners 
– Upper bounds for low-dimensional posets 

– Lower bounds via linear programming 



Undirected vs. Directed 

• Trivial lower bound: ▪  edges needed 

• Every undirected graph has a (2t+1)-spanner 
with ὲ Ⱦ edges. [Althofer, Das, Dobkin, 
Joseph, Soares ‘93] 

• Kruskal-like greedy + girth argument 

=> ὲ approximation 

• Time/space-efficient constructions of 
undirected approximate distance oracles 
[Thorup, Zwick, STOC ‘01] 

 

 



Undirected vs Directed 

• For some directed graphs ɱὲ  edges 
needed for a k-spanner: 

 

 

 

 

 

 

• No space-efficient directed distance oracles: 
some graphs require ɱὲ  space. [TZ ‘01] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Unit-Length Directed k-Spanner 
• O(n)-approximation: trivial (whole graph) 



Our ὕ ὲ-approximation 

• Paths of stretch at most k for all  edges =>  

• Classify edges: thick and thin 

• Take union of spanners for them 

–Thick edges: Sampling 

–Thin edges: LP + randomized rounding 

 

 



Local Graph 

• Local graph for an edge (a,b): Induced by 
vertices on paths of stretch Ὧ from a to b 

 

 

 

 

 

• Paths of stretch Ὧ only use edges in local 
graphs 

• Thick edges: ▪  vertices in their local graph. 
Otherwise thin. 



Sampling [BGJRW’09, DK11] 
• Pick / ▪ἴἶ▪  seed vertices at random 

• Take in- and out- shortest path trees for each 

 

 

 

 

• Handles all thick edges ( ὲ  vertices in their 
local graph) w.h.p. 

• # of edges  ςὲ ρ╞ ▪ἴἶ▪ ὕὖὝẗu ὲȢ 



Key Idea: Antispanners 
• Antispanner – subset of edges, whose 

removal destroys all paths from a to b of 
stretch at most k 

• Graph is spanner <=> hits all antispanners 
• Enough to hit all minimal antispanners for all thin 

edges 
• If Ὁ  is not a spanner for an edge (a,b) => Ὁ Ὁʌ  is 

an antispanner, can be minimized greedily 
 



Linear Program (~dual to [DK’11]) 
 Hitting-set LP: В ὼᶰ  ᴼάὭὲ 

ὼ

Ἃɴ 

ρ 

for all minimal antispanners A for all thin edges. 

• # of minimal antispanners may be 
exponential in ὲ =>  Ellipsoid + Separation 
oracle 

• We will show: ὲ Ὡ minimal 
antispanners for a fixed thin edge  

• Assume that we guessed OPT = the size of 
the sparsest k-spanner (at most ὲ values) 



Oracle 
Hitting-set LP: В ὼᶰ  ὕὖὝ 

ὼ

Ἃɴ 

ρ 

for all minimal antispanners A for all thin edges. 

• We use a randomized oracle => in both cases 
oracle fails with exponentially small probability. 



• Rounding: Take e w.p. ὴ = ÍÉÎ▪ἴἶ▪ẗὼȟρ 

 

 

 

 

 

• SMALL SPANNER: We have a set of edges of 
size Вὼẗὕ ὲ ὕὖὝẗὕ ὲ w.h.p. 

• Pr[LARGE SPANNER]  Å  by Chernoff. 

• Pr[CONSTRAINT NOT VIOLATED] Å  
(next slide) 

Randomized Oracle = Rounding 



Pr[CONSTRAINT NOT VIOLATED] 

• Set ὛȡᶅὩɴ Ὁ we have 0Ò Ὡɴ Ὓ ÍÉÎὲÌÎὲὼȟρ 

• For a fixed minimal antispanner A, such that 
В ὼ ρᶰ :  

0ÒὛ᷊ A ᶮ ρ ὲÌÎὲ ὼ

Aɴ

Ὡ Вᶰ ▄ ▪■▪▪ 

• #minimal antispanners for a fixed edge ▼ȟ◄   

#different shortest path trees with root s in a local graph 

                          ὲ Ὡ  (for a thin edge) 

• #minimal antispanners ȿὉȿ▄ ▪ἴἶ▪ => union bound: 

Pr[CONSTRAINT NOT VIOLATED]  ȿὉȿ▄ ▪ἴἶ▪ 

 

 



Unit-length 3-spanner 

• ὕὲȾ -approximation algorithm 
– Sampling ὕὲȾ  times 

– Dual LP + Different randomized rounding 
(simplified version of [DK’11]) 

• Rounding scheme (vertex-based): 
– For each vertex όᶰὠ: sample ὶᶰπȟρ  

– Take all edges όȟὺ if 

ÍÉÎὶȟὶ ὕὲȾ ὼ ȟ  

– Feasible solution => 3-spanner w.h.p. (see paper) 



Approximation wrap-up 
• Sampling + LP with randomized rounding 

• Improvement for Directed Steiner Forest: 

–Cheapest set of edges, connecting pairs ίȟὸ  

– Previous: Sampling + similar LP [Feldman, 

Kortsarz, Nutov, SODA ‘09] . Deterministic 

rounding gives ὕὲȾ -approximation 

–We give ὕὲȾ -approximation via 
randomized rounding 



Approximation wrap-up 

• Õ( ▪-approximation for Directed Spanner 

• Small local graphs => better approximation 

• Can we do better for general graphs?  

• Hardness: only excludes polylog(n)-
approximation   

• Integrality gap: ♦▪Ⱦ ꜗ  [DK’11] 

• Can we do better for specific graphs 

• Planar graphs (still NP-hard)? 

 

 



H is a k-TC-spanner of G if H is a k-spanner of 
TC(G) 

Transitive-Closure Spanners 

Transitive closure TC(G) has an edge from u to v iff 

G has a path from u to v 

 

 

 

 

 

 

H is a k-TC-spanner of G if H is a subgraph of 
TC(G) for which distanceH(u,v) ≤ k iff G has a path 

from u to v 

G TC(G) 

2-TC-spanner of G 

Shortcut edge 
consistent with 

ordering 
[Bhattacharyya, Grigorescu, Jung, Raskhodnikova, Woodruff, SODA‘09],  
generalizing [Yao 82; Chazelle 87; Alon, Schieber 87, …] 
 



Applications of TC-Spanners 

·Data structures for storing partial products [Yao, 

’82; Chazelle ’87, Alon, Schieber, 88] 

·Constructions of unbounded fan-in circuits 
[Chandra, Fortune, Lipton ICALP, STOC‘83] 

·Property testers for monotonicity and 
Lipschitzness [Dodis et al. ‘99,BGJRW’09; Jha, 
Raskhodnikova, FOCS ‘11] 

·Lower bounds for reconstructors for 
monotonicity and Lipshitzness [BGJJRW’10, JR’11] 

·Efficient key management in access hierarchies  

 

 

 

 

 

 

Follow references in [Raskhodnikova ’10 (survey)] 



Bounds for Steiner TC-Spanners 

• No non-trivial upper bound for arbitrary 
graphs 

FACT: For a random directed 
bipartite graph of density ½, 
any Steiner 2-TC-spanner 
requires ɱÎ  edges. 



Low-Dimensional Posets 

• [ABFF 09] access hierarchies are low-
dimensional posets 

• Poset ḳ DAG 

• Poset G has dimension d if G can be 
embedded into a hypergrid of dimension d 
and d is minimum. 

 

 

ὩȡὋᴼὋ is a poset embedding if for 
all ὼȟώᶰὋ, ὼṌ ώ iff ὩὼṌ Ὡώ. 
 
Hypergrid ά  has ordering 
ὼȟȣȟὼ Ṍ ώȟȣȟώ  iff ὼ ώ 

for all i 



Main Results 

Stretch k Upper Bound Lower Bound 

2 ὕὲÌÏÇὲ 
ɱ ὲ

‌ÌÏÇὲ

Ὠ
 

where ‌ is a constant 

σ  ὕὲÌÏÇὲÌÏÇÌÏÇὲ   
for constant d 

[DFM 07] 

ɱὲÌÏÇ Ⱦ ὲ 
for constant d 

▓ . Nothing 
better known for 

larger k. 

d is the poset dimension 



2-TC-Spanner for ά  
• Ä ρ (so, n = m) 

2-TC-spanner with άÌÏÇά ὲÌÏÇὲ edges 

 

 

 

 

 

… … 

• d > 1 (so, Î Í ) 

2-TC-spanner with ÍÌÏÇÍ Î  edges 

by taking d-wise Cartesian product of 2-TC-
spanners for a line. 

 

We show this is 

tight upto ♪▀ for a 

constant ♪. 



Lower Bound Strategy 

• Write in IP for a minimal 2-TC-spanner. 

• OPT ὒὖ ὒὖ  

• It is crucial that the integrality gap of the primal 
is small. 

• Idea: Construct some feasible solution for the 
dual => lower bound on OPT. 

• OPT ὒὖ ὒὖ ὒὄ  

 

 

 



IP Formulation 

• {0,1}-program for Minimal 2-TC-spanner: 

minimize  
 

subject to: 
    
   ὼ ὴ   όᶅṌύṌὺ 
   ὼ ὴ   όᶅṌύṌὺ 
    
      όᶅṌὺ 
 

ὼ

ȟȡṌ

 

 

ὴ ρ

ȡṌ Ṍ

 



Dual LP 

• Take fractional relaxation of IP and look at its dual: 

maximize 
 

 
subject to:      όᶅṌὺ 
 
 
          ώ ή ὶ   όᶅṌύṌὺ 
         π ώ ȟή ȟὶ ρ  όᶅṌύṌὺ 
       

ώ

ȟȡṌ

 

ή ὶ ρ

ȡṌȡṌ

 



Constructing solution to dual LP 

• Now we use fact that poset is a hypergrid! For όṌὺ, set 

ώ  , where ὠὺ  ό is volume of box with 

corners u and v. 

 

 maximize 
 
subject to: 
      όᶅṌὺ 
 
 
         ώ ή ὶ   όᶅṌύṌὺ 
       

ώ

ȟȡṌ

 

ή ὶ ρ

ȡṌȡṌ

 

□ἴἶ□ ▀ 

Set ▲◊◌○ ◐◊○
╥◌ ◊

╥◌ ◊ ╥○ ◌
, ►◊◌○ ◐◊○

╥○ ◌

╥◌ ◊ ╥○ ◌
 

Ⱬ▀ 



Constructing solution to dual LP 

• Now we use fact that poset is a hypergrid! For 

όṌὺ, set ώ  , where ὠὺ ό is 

volume of box with corners u and v. 

 

 maximize 
 
subject to: 
      όᶅṌὺ 
 
 
         ώ ή ὶ   όᶅṌύṌὺ 
       

ώ

ȟȡṌ

 

ή ὶ ρ

ȡṌȡṌ

 

□ἴἶ□ ▀Ⱦ Ⱬ▀ 

Set ▲◊◌○ ◐◊○
╥◌ ◊

╥◌ ◊ ╥○ ◌
, ►◊◌○ ◐◊○

╥○ ◌

╥◌ ◊ ╥○ ◌
 

 



Wrap-up 
• Upper bound for Steiner 2-TC-spanner  

• Lower bound for 2-TC-spanner for a hypergrid. 

– Technique: find a feasible solution for the dual LP 

• Lower bound of ɱὲÌÏÇ Ⱦ ὲ for Ὧ σ. 
– Combinatorial 

– Holds for randomly generated posets, not explicit. 

• OPEN PROBLEM:  

– Can the LP technique give a better lower bound 
for Ὧ  σ? 


