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ABSTRACT
We initiate a systematic study of sublinear algorithms for
approximately testing properties of real-valued data with re-
spect to Lp distances. Such algorithms distinguish datasets
which either have (or are close to having) a certain prop-
erty from datasets which are far from having it with re-
spect to Lp distance. For applications involving noisy real-
valued data, using Lp distances allows algorithms to with-
stand noise of bounded Lp norm. While the classical prop-
erty testing framework developed with respect to Hamming
distance has been studied extensively, testing with respect
to Lp distances has received little attention.

We use our framework to design simple and fast algo-
rithms for classic problems, such as testing monotonicity,
convexity and the Lipschitz property, and also distance ap-
proximation to monotonicity. In particular, for functions
over the hypergrid domains [n]d, the complexity of our al-
gorithms for all these properties does not depend on the lin-
ear dimension n. This is impossible in the standard model.
Most of our algorithms require minimal assumptions on the
choice of sampled data: either uniform or easily samplable
random queries suffice. We also show connections between
the Lp-testing model and the standard framework of prop-
erty testing with respect to Hamming distance. Some of our
results improve existing bounds for Hamming distance.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]; F.1.1 [Theory of Computation]: Models of Compu-
tation—Relations Between Models
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1. INTRODUCTION
Property testing [26, 18] is a rigorous framework for ap-

proximate analysis of global properties of data, which can be
performed given access to a small sample. For example, one
can approximately verify whether a (possibly multidimen-
sional) array of numbers is sorted by examining a carefully
chosen subset of its elements [11, 19, 9]. Formally, a prop-
erty testing problem can be stated by treating data as a
function on the underlying domain. The datasets satisfy-
ing a property form a class of functions. E.g., the set of
all sorted real-valued n-element datasets corresponds to the
class of monotone functions f : [n] → R, while monotone
functions f : [n]d → R represent d-dimensional arrays with
linear size n, sorted in each of the d dimensions1. The prob-
lem of testing sortedness can be formalized as follows. Let
M be the class of all monotone functions. Given a function
f : [n]d → R and a proximity parameter ε, we want to de-
cide whether f ∈ M or f is at distance at least ε from any
function inM. The distance measure in the standard model
is (relative) Hamming distance.

In this paper, we initiate a systematic study of properties
of functions with respect to Lp distances, where p > 0. Prop-
erty testing was originally introduced for analysis of alge-
braic properties of functions over finite fields such as linear-
ity and low degree. Attention to these properties was moti-
vated by applications to Probabilistically Checkable Proofs.
In such applications, Hamming distance between two func-
tions is a natural choice because of its interpretation as the
probability that the two functions differ on a random point
from the domain. Also, many initial results in property test-
ing focused on Boolean functions, for which Lp distances are
the same for p = 0, 1 and, more generally, are related in a
simple way for different values of p, so all choices of p lead to
the same testing problems. Subsequently, property testing
algorithms have been developed for multiple basic proper-
ties of functions over the reals (e.g., monotonicity, convexity,
submodularity, the Lipschitz property, etc.). We study test-
ing these properties w.r.t. Lp distances, providing different
approximation guarantees, better suited for many applica-
tions with real-valued data.

Lp-testing. Let f be a real-valued function over a fi-

1We use [n] to denote the set {1, 2, . . . , n}.
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nite2 domain D. For p ≥ 1, the Lp-norm of f is ‖f‖p =(∑
x∈D |f(x)|p

)1/p
. For p = 0, let ‖f‖0 =

∑
x∈D ‖f(x)‖0 be

the number of non-zero values of f . Let 1 denote the func-
tion that evaluates to 1 on all x ∈ D. A property P is a set
of functions over D. For real-valued functions f : D → [0, 1]
and a property P, we define relative Lp distance as follows3:

dp(f,P) = inf
g∈P

‖f − g‖p
‖1‖p

= inf
g∈P

(E[|f − g|p])1/p ,

where the first equality holds for p ≥ 0 and the second for
p > 0. The normalization by a factor ‖1‖p ensures that
dp(f,P) ∈ [0, 1]. For p ≥ 0, a function f is ε-far from a
property P w.r.t. the Lp distance if dp(f,P) ≥ ε. Otherwise,
f is ε-close to P.

Definition 1.1. An Lp-tester for a property P is a ran-
domized algorithm that, given a proximity parameter ε ∈
(0, 1) and oracle access to a function f : D → [0, 1],

1. accepts with probability at least 2/3 if f ∈ P;

2. rejects with probability at least 2/3 if f is ε-far from P
w.r.t. the Lp distance.

The corresponding algorithmic problem is called Lp-testing.
Standard property testing corresponds to L0-testing, which
we also call Hamming testing.

Tolerant Lp-testing and Lp-distance approximation.
An important motivation for measuring distances to prop-
erties of real-valued functions w.r.t. Lp metrics is noise-
tolerance. In order to be able to withstand noise of bounded
Hamming weight (small number of outliers) in the prop-
erty testing framework, Parnas, Ron, and Rubinfeld [23]
introduced tolerant property testing. One justification for
Lp-testing is that in applications involving real-valued data,
noise added to the function often has large Hamming weight,
but bounded Lp-norm for some p > 0 (e.g., Brownian mo-
tion, white Gaussian noise, etc.). This leads us to the fol-
lowing definition, which generalizes tolerant testing [23].

Definition 1.2. An (ε1, ε2)-tolerant Lp-tester for a prop-
erty P is a randomized algorithm which, given ε1, ε2 ∈ (0, 1),
where ε1 < ε2, and oracle access to a function f : D → [0, 1],

1. accepts with probability at least 2/3 if f is ε1-close to
P with respect to Lp distance.

2. rejects with probability at least 2/3 f is ε2-far from P
with respect to Lp distance.

For example, a tolerant L1-tester can ignore both uniform
noise of bounded magnitude and noise of large magnitude
concentrated on a small set of outliers.

2Some of our results apply to functions over infinite mea-
surable domains, i.e.,

∫
D 1 < ∞, where 1 is an indicator

function of the domain D. This is why we use the name Lp
rather than `p. An important example of such a domain is
the hypercube [0, 1]d in Rd.
3The definition of distance dp can be extended to functions
f : D → [a, b], where a < b, by changing the normalization
factor to ‖1‖p · (b−a). Our results hold for the more general
range (if the algorithms are given bounds a and b), since
for the properties we consider (monotonicity, the Lipschitz
property and convexity), testing f reduces to testing f ′ =
f(x)−a
b−a . For ease of presentation, we set the range to [0, 1].

A related computational task is approximating the Lp dis-
tance to a property P: given oracle access to a function f ,
output an additive approximation to the distance dp(f,P),
which has the desired accuracy with probability at least 2/3.
Distance approximation is equivalent to tolerant testing (up
to small multiplicative factors in the running time) [23].
Both problems were studied extensively for monotonicity [23,
1, 27, 13] and convexity [12]. Despite significant progress,
an optimal algorithm is not known even for monotonicity in
one dimension. In contrast, for L1-testing we are able to
fully resolve this question for one-dimensional functions.

Connections with learning. Another compelling mo-
tivation for Lp-testing comes from learning theory. It has
been pointed out that property testing can be helpful in
model selection. If the concept class for learning a tar-
get function is not known reliably in advance, one can first
run more efficient property testing or distance approxima-
tion algorithms in order to check multiple candidate concept
classes for the subsequent learning step. It is important that
the approximation guarantees of the preprocessing step and
the learning step be aligned. Because Lp distances are fre-
quently used to measure error in PAC-learning of real-valued
functions (see e.g. [20]), an Lp-testing algorithm is a natural
fit for preprocessing in such applications, especially when
noisy real-valued data is involved. We believe that investi-
gating Lp-testing might be an important step in bridging the
gap between existing property testing and learning models.

We also note that the well established connection between
Hamming testing and learning [18] naturally extends to Lp-
testing, and we exploit it in our results on monotonicity and
convexity (see Section 1.2). Namely, from the information-
theoretic perspective, property testing is not harder than
PAC-learning (up to a small additive factor), although com-
putationally this holds only for proper learning. Tolerant
testing and distance approximation are related in a simi-
lar way to agnostic learning [23]. Thus, the goal of property
testing is to design algorithms which have significantly lower
complexity than the corresponding learning algorithms and
even go beyond the lower bounds for learning.

Connections with approximation theory. Another
closely related field is that of approximation theory. Compu-
tational tasks considered in that field (e.g., approximating
a class of functions with Lp error) are similar to learning
tasks. Basically, the only differences between approxima-
tion and learning tasks are that approximation algorithms
are usually allowed to query the input function at points of
their choice and are non-agnostic (i.e., they work only under
the assumption that the input function is in a given class).
Approximation theory is not known to imply any interesting
results for Hamming property testing primarily because ap-
proximation results usually have Lp error with p > 0. But
once the Lp metric is considered in property testing, the par-
allels between the computational tasks studied in sublinear
algorithms and approximation theory become apparent. In
Section 1.2.3, we exploit the connection to approximation
theory to get an Lp-testing algorithm for convexity.

Previous work related to Lp-testing. No prior work
systematically studies Lp-testing of properties of functions.
The only explicitly stated Lp-testing result for p > 0 is
the L1-tester for submodular functions in a recent paper by
Feldman and Vondrák [14]. It is a direct corollary of their
junta approximation result w.r.t. L1 distance. The upper
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bound on the query complexity of L1-testing of submodu-
larity in [14] is far from the known lower bound.

There are also property testing papers that work with L1

distance, but consider different input access. Rademacher
and Vempala [24] study property testing whether a given
set S is convex, where ε-far means that there is no convex
set K such that vol(K∆S) ≤ ε ·vol(S). In addition to oracle
access, their algorithm can sample a random point form the
set S. Finally, L1 distance is also widely used in the line of
work of testing properties of distributions started by [3].

1.1 Basic Relationships Between Models
Our first goal is to establish relationships between Ham-

ming, L1 and L2-testing for standard and tolerant models4.

Lp-testing. We denote the worst-case query complexity
of Lp-testing for property P with proximity parameter ε by
Qp(P, ε). The following fact establishes basic relationships
between Lp-testing problems and follows directly from the
inequalities between Lp-norms. (See full version for details.)

Fact 1.1. Let ε ∈ (0, 1) and P be a property over any do-
main. Then Q0(P, ε) ≥ Q1(P, ε) ≥ Q2(P,

√
ε) ≥ Q1(P,

√
ε).

Moreover, if P is a property of Boolean functions then
Q0(P, ε) = Q1(P, ε) = Q2(P,

√
ε).

This fact has several implications. First, L1-testing is no
harder than standard Hamming testing (the first inequality).
Hence, upper bounds on the query complexity of the latter
are the baseline for the design of L1-testing algorithms. As
we will demonstrate, for the properties considered in this
paper, L1-testing has significantly smaller query complexity
than Hamming testing. This fact also shows that L1 and
L2-testing problems are equivalent up to quadratic depen-
dence on ε (the second and third inequalities). Finally, the
equivalence of Lp-testing problems for Boolean functions im-
plies that all lower bounds for such functions in the standard
Hamming testing model are applicable to Lp-testing.

Tolerant Lp-testing. We denote the worst-case query
complexity of (ε1, ε2)-tolerant Lp-testing of a property P by
Qp(P, ε1, ε2). Introducing tolerance complicates relation-
ships between Lp-testing problems for different p as com-
pared to the relationships in Fact 1.1. The proof of the
following fact is deferred to the full version.

Fact 1.2. Let ε1, ε2 ∈ (0, 1) such that ε1 < ε22 and P be
a property over any domain. Then

Q1(P, ε21, ε2) ≤ Q2(P, ε1, ε2) ≤ Q1(P, ε1, ε22).

Facts 1.1-1.2 establish the key role of L1-testing in under-
standing property testing w.r.t. Lp distances since results for
L2-testing follow with a minor loss in parameters. Moreover,
in many cases, these results turn out to be optimal.

1.2 Our Results
We consider three properties of real-valued functions: mo-

notonicity, the Lipschitz property and convexity. We focus
on understanding the L1 distance to these properties and ob-
tain results for L2 distance by applying Facts 1.1-1.2. Most
of our algorithms have additional guarantees, defined next.

4In the rest of the paper, we consider Lp-testing and distance
approximation only for p = 0, 1, 2, leaving the remaining
cases for the full version of this paper.

Definition 1.3. An algorithm is called nonadaptive if it
makes all queries in advance, before receiving any responses;
otherwise, it is called adaptive. A testing algorithm for prop-
erty P has 1-sided error if it always accepts all inputs in P;
otherwise, it has 2-sided error.

1.2.1 Monotonicity
Monotonicity is perhaps the most investigated property in

the context of property testing and distance approximation.

Definition 1.4. Let D be a (finite) domain equipped with
a partial order �. A function f : D → R is monotone if
f(x) ≤ f(y) for all x, y ∈ D satisfying x � y.

An important specific domainD is a d-dimensional hypergrid
[n]d equipped with the partial order �, where (x1, . . . , xn) �
(y1, . . . , yn) whenever x1 ≤ y1, . . . , xn ≤ yn. The special
case [n] of the hypergrid is called a line, and the special case
[2]d is a hypercube. These domains are interesting in their
own right. For example, testing monotonicity on the line [n]
corresponds to testing whether a list of n numbers is sorted
(in nondecreasing order). The L1 distance to monotonicity
on the line is the total change in the numbers required to
make them sorted.

Characterization. We give a characterization of the L1

distance to monotonicity in terms of the distance to mono-
tonicity of Boolean functions (Lemma 2.1). The main idea
in our characterization is that every function can be viewed
as an integral over Boolean threshold functions. This view
allows us to express the L1-distance to monotonicity of a
real-valued function f : D → [0, 1] as an integral over the L1-
distances to monotonicity of its Boolean threshold functions.
We use this characterization to obtain reductions from the
general monotonicity testing and distance approximation to
the case of Boolean functions (Section 2.1) that preserve
query complexity and running time5.

Recall that for Boolean functions, L0 and L1 distances
are equal. Thus, our reductions allow us to capitalize on
existing algorithms and lower bounds for (Hamming) testing
of and distance approximation to monotonicity of Boolean
functions. For example, for the case of the line domain [n],
it is folklore that monotonicity of Boolean functions can be
tested nonadaptively and with 1-sided error in O

(
1
ε

)
time.

In contrast, for Hamming testing with the general range, one
needs Ω

(
logn
ε
− 1

ε
log 1

ε

)
queries even for adaptive 2-sided

error testers [11, 15, 6]. Therefore, testing monotonicity
on the line is a factor of log n faster w.r.t. the L1 distance
than Hamming distance. A comparison between the query
complexity of Lp-testing monotonicity on the line and the
hypergrid for p = 0, 1, 2 is given in Table 1.1. Results for
other domains are deferred to the full version of this paper.

5Our reductions are stated for nonadaptive algorithms.
Such reductions are useful because all known upper bounds
for testing monotonicity can be achieved by nondaptive
testers, with one exception: our adaptive bound for test-
ing Boolean functions on constant-dimensional hypergrids
from Section 2.3. We can get a reduction that works for
adaptive algorithms by viewing L1-testing monotonicity as a
multi-input concatenation problem [16]. This reduction pre-
serves the query complexity for the special class of proximity-
oblivious testers [8], but incurs a loss of O

(
1
ε

)
in general

and, specifically, when applied to our adaptive tester. As
this approach would not improve our results, we focus on
reductions for nonadaptive algorithms.
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Monotonicity

Domain Hamming Testing Lp-Testing for p = 1, 2

[n]

O
(
logn
ε

)
n.a. 1-s. O

(
1
εp

)
n.a. 1-s.

[11] Lem. 2.2 + Fact 1.1

Ω
(
logn
ε
− 1

ε
log 1

ε

)
Ω
(

1
εp

)
a. 2-s.

a. 2-s. [11, 15, 6] Fact 1.1

[n]d

O
(
d logn
ε

)
n.a. 1-s. O

(
d
εp

log d
εp

)
n.a. 1-s.

[5] Thm. 1.3 + Fact 1.1

Ω
(
d logn
ε
− 1

ε
log 1

ε

)
Ω
(

1
εp

log 1
εp

)
n.a. 1-s.

a. 2-s. [6] Thm. 2.12 + Fact 1.1

The c-Lipschitz property

Domain Hamming Testing Lp-Testing for p = 1, 2

[n]d

O
(
d logn
ε

)
n.a. 1-s. O

(
d
εp

)
n.a. 1-s.

[5] Thm. 1.4 + Fact 1.1

Ω
(
d logn
ε
− 1

ε
log 1

ε

)
Ω(d+ 1

εp
) a. 2-s.

a. 2-s. [7] [21] + Fact 1.1

Table 1.1: Query complexity of Lp-testing mono-
tonicity / the Lipschitz property of functions f : D →
[0, 1] for p = 1, 2 (a./n.a. = adaptive/nonadaptive, 1-
s./2-s. = 1-sided error/2-sided error).

L1-testing on hypergrids and Levin’s work invest-
ment strategy. One of our reductions (described above)
shows that the nonadaptive complexity of L1-testing mono-
tonicity is the same for functions over [0, 1] and over {0, 1}.
Dodis et al. [9] gave a monotonicity tester of Boolean func-
tions on [n]d that makes O

(
d
ε

log2 d
ε

)
queries and runs in

O
(
d
ε

log3 d
ε

)
time. We obtain a tester with better query and

time complexity.

Theorem 1.3. Let n, d ∈ N and ε ∈ (0, 1). The time
complexity of L1-testing monotonicity of functions f : [n]d →
[0, 1] with proximity parameter ε (nonadaptively and with
one-sided error) is O

(
d
ε

log d
ε

)
.

The test in [9] is based on the dimension reduction (stated
as Theorem 2.4 in Section 2.2) and Levin’s work investment
strategy [22], described in detail by Goldreich [16]. Our
improvement in the upper bound on the query complexity
stems from an improvement to Levin’s strategy. (The ad-
ditional improvement in running time comes from a more
efficient check for violations of monotonicity among sam-
pled points.) As described in [16], Levin’s strategy has
been applied in many different settings [22], including test-
ing connectedness of bounded-degree graphs in [17], testing
connectedness of images in [25] and analyzing complexity
of the concatenation problem [16]. Our improvement to
Levin’s strategy saves a logarithmic factor in the running
time in these applications. Specifically, whether a graph of
bounded degree is connected can be tested with O

(
1
ε

log 1
ε

)
queries, whether an image represents a connected object can
be tested with O

(
1
ε2

log 1
ε

)
queries, and there is only an

O
(
log 1

ε

)
overhead in the query complexity of the concate-

nation of property testing instances as compared to solving

a single instance.

Role of adaptivity. Researchers have repeatedly asked
whether adaptivity is helpful in testing monotonicity. All
previously known adaptive tests have been shown to have
nonadaptive analogs with the same query and time com-
plexity. (See, e.g., [4] for a discussion of both points.) Yet,
for some domains and ranges there is a large gap between
adaptive and nonadaptive lower bounds. We exhibit the
first monotonicity testing problem where adaptivity prov-
ably helps: we show that for functions of the form f : [n]2 →
{0, 1}, monotonicity testing can be performed with O

(
1
ε

)
queries with an adaptive 1-sided error algorithm, while ev-
ery nonadaptive 1-sided error algorithm for this task requires
Ω
(
1
ε

log 1
ε

)
queries. Our upper bound of O

(
1
ε

)
queries holds

more generally: for any constant d. This upper bound is op-
timal because one needs Ω

(
1
ε

)
queries to test any nontrivial

property, including monotonicity. Our lower bound shows
that the tester from Theorem 1.3 is an optimal nonadaptive
1-sided error tester for hypergrids of constant dimension.

Our adaptive tester is based on an algorithm that par-
tially learns the class of monotone Boolean functions over
[n]d. (The partial learning model is formalized in Defini-
tion 2.3. In particular, our partial learner implies a proper
PAC learner under the uniform distribution with member-
ship queries.) A straightforward transformation6 gives a 1-
sided error tester from the learner. For the special case
of d = 2, the tester has the desired O( 1

ε
) query complex-

ity. Our O
(
1
ε

)
-query tester for higher dimensions is more

sophisticated: it uses our nonadaptive monotonicity tester
(from Theorem 1.3) in conjunction with the learner. The
idea is that the values previously deduced by the learner do
not have to be queried, thus reducing the query complexity.

Our lower bound for nonadaptive testing is based on a
hexagon packing.

Tolerant testing and distance approximation. In
the full version of the paper, we give L1-distance approx-
imation algorithms with additive error δ for monotonicity
of functions on the line and the 2-dimensional grid. The
query complexity for the line and the grid are O(1/δ2) and

Õ(1/δ4), respectively. Our algorithm for the line is opti-
mal. It implies a tolerant L1-tester for monotonicity on the
line with query complexity O

(
ε2

(ε2−ε1)2
)

and, by Fact 1.2, a

tolerant L2-tester for this problem with query complexity

O
( ε22
(ε22−ε1)2

)
.

A crucial building block of our algorithms is the reduc-
tion from the general approximation problem to the special
case of Boolean functions, described above. For the line,
we further reduce the problem to approximating the longest
correct bracket subsequence. Our distance approximation
algorithm for Boolean functions improves on the Õ(1/δ2)-
query algorithm of Fattal and Ron [13]. For d = 2, we apply
our reduction to the algorithm of [13] for Boolean functions.

1.2.2 The c-Lipschitz properties
The c-Lipschitz properties are a subject of a recent wave

of investigation [21, 2, 8, 5, 7], with a focus on hypergrid do-
mains, due to their applications to differential privacy [10].

6Our transformation can be viewed as an analog of Proposi-
tion 3.1 in [18]. This proposition relates the query com-
plexity of 2-sided error testing to the sample complexity
of proper learning. Our transformation requires a stronger
learner and yields a 1-sided error tester.
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Definition 1.5. Let (D, dD) be a finite metric space, i.e.,
D is a finite set and dD : D × D → R is a metric. Let
the Lipschitz constant c > 0 be a real number. A function
f : D → R is c-Lipschitz if |f(x) − f(y)| ≤ c · dD(x, y) for
all x, y ∈ D. If c = 1, such a function is called Lipschitz.

The hypergrid, the hypercube and the line domains are de-
fined as for monotonicity, except that instead of equipping
them with the partial order, we equip them with the follow-
ing metric: dD(x, y) = ‖x− y‖1.

Characterization. We give a combinatorial charac-
terization of the L1 distance to the Lipschitz property (in
Lemma 3.1). We show that it is equal to the weight of
a maximum weight matching in the appropriately defined
graph associated with the function. We note that a similar-
looking near-characterization is known w.r.t. the Hamming
distance, but the upper and lower bounds on the Hamming
distance to the Lipschitz property are off by a factor of 2.
Our characterization w.r.t. the L1 distance is tight.

L1-testing on hypergrids. We use our characteri-
zation to obtain a c-Lipschitz L1-tester for functions over
hypergrids that is faster by a factor of log n than the best
possible Hamming tester. Known bounds on the query com-
plexity of testing the c-Lipschitz property on hypergrids are
summarized in Table 1.1.

Theorem 1.4. Let n, d ∈ N and ε, c ∈ (0, 1). The time
complexity of L1-testing the c-Lipschitz property of functions
f : [n]d → [0, 1] (nonadaptively and with 1-sided error) with
proximity parameter ε is O

(
d
ε

)
.

The running time of our tester has optimal dependence on
dimension d. This follows from the Ω(d) lower bound on
Hamming testing of the Lipschitz property of functions f :
{0, 1}d → {0, 1, 2} in [21]. (This problem is equivalent to
Hamming testing 1/2-Lipschitz property of functions f :
{0, 1}d → {0, 1/2, 1}, and for functions with this range, rel-
ative L0 and L1 distances are off by at most factor of 2.)

The running time of our tester does not depend on the
Lipschitz constant c, but the algorithm itself does. The crux
of designing the algorithm is understanding the number of
pairs of points on the same line which do not obey the Lips-
chitz condition (called violated pairs), and selecting the right
subset of pairs (depending on c) so that a constant fraction
of them are violated by any function on the line that is ε-
far from monotone. The analysis uses dimension reduction
from [2], generalized to work for functions with range R.

1.2.3 Convexity and Submodularity
We establish and exploit the connection of L1-testing to

approximation theory. Our results for testing convexity of
functions over [n]d (presented in the full version) follow from
this connection. For d = 1, we get an optimal tester with
query complexity O(1/ε) and for higher dimensions, query
complexity is independent of the linear dimension n.

2. L1-TESTING MONOTONICITY

2.1 Distance to Monotone: Characterization
We characterize the L1 distance to monotonicity in terms

of the distance to monotonicity of Boolean functions. We
use this characterization to obtain reductions from the gen-
eral monotonicity testing and distance approximation to the

case of Boolean functions. The main idea in our character-
ization is that every function can be viewed as an integral
over Boolean threshold functions, defined next.

Definition 2.1. For a function f : D → [0, 1] and t ∈
[0, 1], the threshold function f(t) : D → {0, 1} is:

f(t)(x) =

{
1 if f(x) ≥ t;
0 if f(x) < t.

We can express a real-valued function f : D → [0, 1] as an
integral over its Boolean threshold functions:

f(x) =

∫ f(x)

0

dt =

∫ 1

0

f(t)(x)dt.

The integrals above and all other integrals in this section
are well defined because we are integrating over piecewise
constant functions.

Let L1(f,M) denote the L1 distance from f to the set of
monotone functions, M, and let dM(f) be the relative ver-
sion of this distance, i.e., dM(f) = L1(f,M)/|D| for func-
tions f : D → [0, 1].

Lemma 2.1 (Characterization). For every function

f : D → [0, 1], the distance dM(f) =
∫ 1

0
dM(f(t)) dt.

Proof. Since f and f(t) are functions over the same do-

main, it is enough to prove L1(f,M) =
∫ 1

0
L1(f(t),M) dt.

First, we prove that L1(f,M) ≤
∫ 1

0
L1(f(t),M) dt. For all

t ∈ [0, 1], let gt be the closest monotone (Boolean) function

to f(t). Define g =
∫ 1

0
gt dt. Since gt is monotone for all

t ∈ [0, 1], function g is also monotone. Then

L1(f,M) ≤ ‖f − g‖1 =
∥∥∥ ∫ 1

0

f(t) dt−
∫ 1

0

gt dt
∥∥∥
1

=
∥∥∥ ∫ 1

0

(f(t) − gt) dt
∥∥∥
1

≤
∫ 1

0

‖f(t) − gt‖1 dt =

∫ 1

0

L1(f(t),M) dt.

Next, we prove that L1(f,M) ≥
∫ 1

0
L1(f(t),M) dt. Let g

denote the closest monotone function to f in L1 distance.
Then g(t) is monotone for all t ∈ [0, 1]. We obtain:

L1(f,M) = ‖f − g‖1 =

∥∥∥∥∫ 1

0

(f(t) − g(t)) dt
∥∥∥∥
1

=
∑

x:f(x)≥g(x)

∫ 1

0

(f(t)(x)− g(t)(x)) dt

+
∑

x:f(x)<g(x)

∫ 1

0

(g(t)(x)− f(t)(x)) dt

=

∫ 1

0

( ∑
x:f(x)≥g(x)

(f(t)(x)− g(t)(x))

+
∑

x:f(x)<g(x)

(g(t)(x)− f(t)(x))
)
dt

=

∫ 1

0

‖f(t) − g(t)‖1 dt ≥
∫ 1

0

L1(f(t),M) dt.

The last equality above holds because for all functions f, g
and x ∈ D, the inequality f(x) ≥ g(x) holds iff for all thresh-
olds t ∈ [0, 1], it holds that f(t)(x) ≥ g(t)(x).
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We use our characterization in reductions for L1-testing
(Lemma 2.2) and distance approximation. The second re-
duction and both proofs appear in the full version.

Lemma 2.2. If T is a nonadaptive 1-sided error ε-test for
monotonicity of functions f : D → {0, 1} then it is also a
nonadaptive 1-sided error ε-test w.r.t. the L1 distance for
monotonicity of functions f : D → [0, 1].

2.2 Nonadaptive Tester over Hypergrids
Before proving Theorem 1.3, we state one of the build-

ing blocks—the probabilistic inequality that leads to an im-
provement on Levin’s work investment strategy. To moti-
vate the result, we summarize Goldreich’s explanation [16]
on how it can be used and instantiate it with our scenario.

Suppose an algorithm needs to find some “evidence” (e.g.,
a violation of monotonicity) using as little work as possi-
ble. It can select an element (e.g., a line) according to some
distribution D and invest some work in it to discover the evi-
dence. All elements e have different quality q(e) ∈ [0, 1], not
known in advance (e.g., the distance from the line to mono-
tonicity). To extract evidence from element e (e.g., find a
violated pair on the line), the algorithm must invest work
which is higher when the quality q(e) is lower (e.g., work
inversely proportional7 to q(e)). Suppose Ee←D[q(e)] ≥ α.
What is a good work investment strategy for the algorithm?

This question can be formalized as follows. The algo-
rithm’s strategy is the list (s1, . . . , sk) of k positive integers,
indicating that the algorithm will invest work si in the ith
element. In the ith step, the algorithm selects an element
ei according to its distribution. If si is at least the work
needed for item ei, the algorithm wins. If it does not win
in k steps, it loses. The cost of the strategy is

∑k
i=1 si, the

total work the algorithm decided to invest. What is the min-
imum cost of a strategy that guarantees that the algorithm
wins with constant probability (specifically, say, probability
at least 2/3)? A good strategy is suggested by the following
probabilistic inequality (a strengthening of [16, Fact A.1]).
In this inequality, X represents the random variable equal
to q(e) when e is selected according to D.

Lemma 2.3. Let X be a random variable that takes values
in [0, 1]. Suppose E[X] ≥ α, where α ≤ 1/2, and let t =
d3 log 1

α
e. Let δ ∈ (0, 1) be the desired probability of error.

For all j ∈ [t], let pj = Pr[X ≥ 2−j ] and kj = 4 ln 1/δ

2jα
. Then

t∏
j=1

(1− pj)kj ≤ δ.

That is, for each j ∈ [t], the algorithm can set kj of the
si’s to be equal to the work needed for elements with quality
2−j (or higher). Then the probability that the algorithm
loses in all rounds is at most δ. This strategy achieves a
reduction by a factor of t for the number of si’s that need to
be devoted to elements of quality 2−j , compared to Levin’s
strategy, as explained by Goldreich. For example, when the
work is inversely proportional to the quality, kj of the si’s

7The relationship between work and quality is different in
our application to monotonicity, but this one is most fre-
quently used. Also, in the application to monotonicity, there
is no certainty that if you invest the specified amount of
work, you will find a witness; rather, the probability of find-
ing a witness increases with the amount of work you invest.

would be set to 2j . Then the total cost of the strategy for
constant δ is

∑
j∈[t]O(1/(2jα)) · 2j = O

(
1
α

log 1
α

)
. This is

a reduction by a factor of log 1
α

in total work, compared to
Levin’s strategy.

Proof of Lemma 2.3. It is enough to prove the follow-
ing inequality (whose proof appears in the full version):

t∑
j=1

pj
2j
≥ α

4
. (1)

It implies the lemma since
∏t
j=1(1−pj)kj ≤

∏t
j=1 e

−pj ·kj

= e−
∑t
j=1 pj ·kj = e

−
∑t
j=1

pj

2jα
·(4 ln 1/δ) ≤ e−

1
4
·(4 ln 1/δ) = δ.

The first inequality in this calculation follows from the fact
that 1−x ≤ ex and the last inequality follows from (1).

Proof of Theorem 1.3. By Lemma 2.1, it suffices to
prove Theorem 1.3 for the special case when the input func-
tion f is Boolean. Our monotonicity tester for functions
f : [n]d → {0, 1}, like that in [9], works by picking a random
axis-parallel line, querying a few random points on it and
checking if they violate monotonicity. The difference is in
the choice of the number of lines and points to query and in
a more efficient check for monotonicity violations.

We start by establishing notation for axis-parallel lines.
For i ∈ [d], let ei ∈ [n]d be 1 on the ith coordinate and 0 on
the remaining coordinates. Then for every dimension i ∈ [d]
and α ∈ [n]d with αi = 0, the line along dimension i with
position α is the set {α+ xi · ei | xi ∈ [n]}. Let Ln,d be the
set of all dnd−1 axis-parallel lines in [n]d. Let dM(f) denote
the (relative) distance to monotonicity of a function f . For
two functions f, g we denote the distance between f and g
by dist(f, g) = Prx[f(x) 6= g(x)].

Algorithm 1: Nonadaptive monotonicity tester.

input : parameters n, d and ε; oracle access to
f : [n]d → {0, 1}.

1 for j = 1 to d3 log(2d/ε)e do
2 repeat d(8 ln 9)d/(2jε)e times:
3 Sample a uniformly random line ` from Ln,d.
4 Query a set Q of 10 · 2j points uniformly from `.
5 Suppose ` is a line along dimension i.
6 Let x = maxz∈Q:f(z)=0 zi; y = minz∈Q:f(z)=1 zi.
7 if x > y then reject

8 accept

Consider the test presented in Algorithm 1. Clearly, its
query complexity and running time are O

(
d
ε

log d
ε

)
. It is

nonadaptive and always accepts all monotone functions. It
remains to show that functions that are ε-far from mono-
tone are rejected with probability at least 2/3. We use the
following two lemmas from [9] in our analysis of this case.

Lemma 2.4 ([9, Lemma 6(2)]). For f : [n]d → {0, 1},
E`←Ln,d [dM(f |`)] ≥ dM(f)

2d
.

Lemma 2.5 ([9, Lemma 16]). For f : [n] → {0, 1} if
dM(f) = γ then for a random sample Q ⊆ [n] of size k, the

probability that f |Q is not monotone is at least (1−e−γk/4)2.

Consider the behavior of Algorithm 1 on an input function
f that is ε-far from monotone. We apply our improvement
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to Levin’s strategy (Lemma 2.3) with the random variable
X = dM(f |`), where line ` is selected uniformly from Ln,d,
and with probability of error δ = 1/9. By Lemma 2.4, the
expectation E[X] ≥ ε

2d
. Thus, in Lemma 2.3, parameter

α is set to ε
2d

, parameter t is set to d3 log 2d
ε
e, and for all

j ∈ [t], the parameter kj = (8 ln 9)·d
2jε

. By Lemma 2.3, with
probability at least 8/9, in at least one iteration of Step 3,
Algorithm 1 will sample a line ` satisfying dM(f |`) ≥ 2−j .
Conditioned on sampling such a line, by Lemma 2.5, the
sample Q taken in Step 4 of Algorithm 1 results in a non-
monotone restriction f |Q with probability at least 3/4. Fi-
nally, Step 6 of Algorithm 1 rejects iff f |Q is not monotone.
Thus, for the index j given by Lemma 2.3, the probability
that Algorithm 1 rejects f in the jth iteration of the for
loop is at least 8

9
· 3
4

= 2
3
, as required.

2.3 Adaptive Tester over Hypergrids

Theorem 2.6. The query complexity of ε-testing mono-
tonicity of functions f : [n]d → {0, 1} (with one-sided error)

is O
(
d2d logd−1 1

ε
+ d2 log d

ε

)
. Specifically, for constant d, the

query complexity is O
(
1
ε

)
.

Recall from Section 1.2.1 that our adaptive tester is based
on an algorithm that learns the class of monotone Boolean
functions over [n]d in the sense of Definition 2.3 below. The
learner is presented in Section 2.3.1. Transformation from
the learner to the tester is given in Lemma 2.11. This trans-
formation, together with our learner, immediately implies
Theorem 2.6 for the special case of d = 2. The general test
is presented in Section 2.3.3.

2.3.1 Partial learner of monotone Boolean functions

Definition 2.2. An ε-partial function g with domain D
and range R is a function g : D → R ∪ {?} that satisfies
Prx∈D[g(x) = ?] ≤ ε. An ε-partial function g agrees with
function f if g(x) = f(x) for all x on which g(x) 6= ?.
Given a function class C, let Cε denote the class of ε-partial
functions, each of which agrees with some function in C.

Definition 2.3. An ε-partial learner for a function class
C is an algorithm that, given a parameter ε and oracle ac-
cess to a function f , outputs a hypothesis g ∈ Cε or fails.
Moreover, if f ∈ C then it outputs g that agrees with f .

Theorem 2.7. Algorithm 2 is a d/2t-partial learner for
the class of monotone Boolean functions over [n]d. It makes

O(d2t(d−1)+d) queries.

Proof. Our learner (Algorithm 2) constructs a d-dimen-
sional quadtree representation of (a partial function that
agrees with) the input function f . Each node in the tree is
marked 0, 1 or ?. The learner stops after constructing t tree
levels. The quadtree is a representation of a partial Boolean
function g on [n]d in the following sense. Each point x in the
domain is contained in exactly one leaf, and g(x) is equal to
the value the leaf is marked with.

Lemma 2.8. In the quadtree returned by Algorithm 2, for
all j, at most d2j(d−1) nodes in level j are marked ?.

Proof. Fix j. Consider the set S = { v[hi]
n/2j

| v is a node

of level j marked with ?}.

Algorithm 2: Partial learner of monotone functions

input : parameters n, d and ε; depth t; oracle access to
a monotone f : [n]d → {0, 1}.

output: a d-dimensional quadtree representation of f .

1 Create quadtree root marked with ? and holding [n]d,
i.e., set root[low]= 1d and root[hi]= n · 1d. // 1d
denotes the d-dimensional vector of 1s.

2 for j = 1 to t do
// Create nodes of level j in the quadtree.

3 Set len = n
2j

.

4 foreach leaf v of the quadtree marked with ? do
// Create 2d children of v.

5 foreach vector k ∈ {0, 1}d do
6 Create child vk of v marked with ?.
7 Set vk[low] = v[low] + len · k and

vk[hi] = vk[low] + (len− 1)1d.
8 if f(vk[hi]) = 0 then mark child vk with 0.
9 if f(vk[low]) = 1 then mark child vk with 1.

10 return the quadtree

Definition 2.4. Let x, y ∈ [n]d. We say that y fully
dominates x if xi < yi for all i ∈ [d].

Consider two nodes u and v at level j of the quadtree, such
that v[hi] fully dominates u[hi]. Observe that at most one of
u and v can be marked with ?. Indeed, if f(u[hi]) = 0 then u
is marked with 0. Otherwise, f(u[hi]) = 1. By monotonicity
of f , since u[hi] ≺ v[low], it follows that f(v[low]) = 1. That
is, v is marked with 1. Thus, for no elements x, y ∈ S,
element y fully dominates element x.

Finally, observe that S ⊆ [m]d, where m = 2j . The lemma
follows from Claim 2.9 that bounds the number of elements
in a set that satisfies the observed conditions.

Claim 2.9. Let S ⊆ [m]d, such that for no elements x, y ∈
S, element y fully dominates element x. Then |S| ≤ dmd−1.

Proof. Let A = {a ∈ [m]d | ai = 1 for some i ∈ [d]}.
We can partition [m]d into chains Ca = {(a+ c ·1d) ∈ [m]d |
c ∈ N}, where a ∈ A. Note that for all a ∈ A and all distinct
x, y ∈ Ca, element y fully dominates element x. Thus, S can
contain at most 1 element in each Ca. Consequently,

|S| ≤ |A| ≤ d ·md−1.

The last inequality holds because there are d ways to choose i
such that ai = 1 and at most md−1 ways to set the remaining
coordinates.

Correctness of Algorithm 2. Each node at level t
holds 1/2dt fraction of the domain points. Therefore, by
Lemma 2.8, the fraction of the domain points that are asso-

ciated with ? leaves of the quadtree is at most d2t(d−1)

2td
= d

2t
.

If function f is monotone, the remaining points are learned
correctly because for each domain point x associated with a
node that is marked 0 or 1, we have a witness that implies
the corresponding value for f(x) by monotonicity of f .
Complexity of Algorithm 2. The learner makes 2d+1

queries for each node marked with ?: two per child. By
Lemma 2.8, there at most

∑t
j=0 d2j(d−1) ≤ 2d·2t(d−1) nodes

marked ?, so it makes O(d2t(d−1)+d) queries. This completes
the proof of Theorem 2.7.
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Corollary 2.10. There is an ε-partial learner for the
class of monotone Boolean functions over [n]2 that makes
O
(
1
ε

)
queries. Over [n]d, there is a d

log 1
ε

-partial learner

that makes O
(
d2d logd−1 1

ε

)
queries.

Proof. To get the first statement, we run Algorithm 2
with d = 2 and depth t = dlog 1

ε
e + 1. For the second

statement, we set t = dlog log 1
ε
e.

2.3.2 Optimal tester for functions [n]2 → {0, 1}
For the special case of d = 2, we can easily get the tester

claimed in Theorem 2.6 from the learner of Theorem 2.7 by
applying the following reduction from testing to learning.

Lemma 2.11. If there is an ε-partial learner for a func-
tion class C that makes q(ε) queries then C can be ε-tested
with 1-sided error with q(ε/2) +O

(
1
ε

)
queries.

Proof. To test if a function f ∈ C, we run the learner
with parameter ε/2. If it fails to output a hypothesis func-
tion g, we reject. Otherwise, we select d 2 ln 3

ε
e points x ∈ D

uniformly at random, and query both f and g on the sam-
ple. If we find a point x on which g(x) 6= ?, but f(x) 6= g(x),
we reject. Otherwise, we accept.

If a function f ∈ C, it is accepted because the learner will
output a hypothesis g which agrees with f . If f is ε-far
from C then any g ∈ Cε/2 will differ from f on at least ε
domain points, at most ε/2 of which can be mapped to ? by
g. Thus, for at least an ε/2 fraction of the domain points
g(x) 6= ? and g(x) 6= f(x). Such a point will be selected
with probability at least 2/3.

2.3.3 Optimal tester for functions f : [n]d → {0, 1}

Proof of Theorem 2.6. Our tester is Algorithm 3.

Algorithm 3: Adaptive monotonicity tester.

input : parameters d ≥ 3, n and ε; oracle access to
f : [n]d → {0, 1}.

1 Let g be the d

log 1
ε

-partial function returned by the

learner from Corollary 2.10 run on f .

2 repeat d 2 log 3
ε
e times:

3 Sample a uniform x ∈ [n]d, query f(x) and reject if
g(x) 6= ? and g(x) 6= f(x).

4 Run Algorithm 1 with parameters n, d, ε/2 as follows:
5 foreach point x queried by the algorithm do
6 Query f(x) only if g(x) = ?; otherwise, substitute

g(x) for f(x).
7 accept if Algorithm 1 accepts, reject if it rejects.

Correctness. Algorithm 3 always accepts a monotone
function because the learner produces a correct partial func-
tion g, there are no inconsistencies between g and f , and
Algorithm 1 always accepts monotone functions. Now sup-
pose f is ε-far from monotone. Let h : [n]d → {0, 1} be the
function defined as follows: h(x) = f(x) if g(x) = ?, and
h(x) = g(x) otherwise. If dist(f, h) > ε/2 then Step 2 of Al-
gorithm 3 rejects with probability at least 2/3. Otherwise,
h is ε/2-far from monotone. Consequently, it is rejected by
Step 4 with probability at least 2/3.

Query complexity. By Corollary 2.10, the learning step
uses O

(
d2d logd−1 1

ε

)
queries. Step 2 (that checks whether

g agrees with f) uses O(1/ε) queries. It remains to analyze
Step 4. Algorithm 1 queries O( d

ε
log d

ε
) points. Out of these,

only the points mapped to ? by g are queried in Step 4.
Since g is a d/log 1

ε
-partial function, it maps at most d/log 1

ε
fraction of its domain to ?. The expected number of queries
made by Step 4 is O( d

ε
log d

ε
) times the probability that the

ith queried point x is mapped to ? by g. This probability is
at most d/log 1

ε
, as all points in [n]d are equally likely to be

the ith query (for all i). So, the expected query complexity

is O( d
ε

log d
ε
) · d

log 1
ε

= O( d
2

ε
+ d2 log d

ε log 1/ε
) = O( d

2 log d
ε

).

2.4 A Lower Bound for Functions on Grid

Theorem 2.12. Every 1-sided error nonadaptive ε-test
for monotonicity of functions f : [n]2 → {0, 1} must make
Ω
(
1
ε

log 1
ε

)
queries.

Proof. By standard arguments, it suffices to specify a
distribution on functions which are ε-far from monotone,
such that every deterministic algorithm must make Ω

(
1
ε

log 1
ε

)
queries to find a violated edge with probability at least 2/3
on inputs from this distribution. Our distribution is uniform
over a hard set of functions, each of which corresponds to
a hexagon. All pairs violated by a function in the set are
contained in the corresponding hexagon. In this proof, we
identify each point (i, j) ∈ [n]2 in the domain of the input
function with a point (x, y) with coordinates x = i/n and
y = j/n in the Euclidian plane. We assume that n is large
enough, so that the area of hexagons in [0, 1]2 we consider is
a good approximation of the fraction of points of the form
(i/n, j/n) they contain.

Definition 2.5. Hexagon Hx,y
t,h with the upper left corner

(x,y), thickness t, and height h consists of points (x, y) :

x + y − t < x+ y < x + y + t,
x < x < x + h,

y − h < y < y.

Now define the hexagon function fx,y
t,h : [0, 1]2 → {0, 1}:

fx,y
t,h (x, y) =

{
1− dx+y(x, y) if (x, y) ∈ Hx,y

t,h ,

dx+y(x, y) otherwise,

where da(x, y) =

{
1 if x+ y ≥ a,

0 otherwise.

Next, we specify the hexagon functions included in the
hard set. The hard set is a union of levels, and each level is
a union of diagonals. Functions of the same level are defined
by equal non-overlapping hexagons. Levels are indexed by
integers starting from 0. Let t0 =

√
ε/ log 1

ε
. In level i,

hexagons have thickness ti = t0 · 2−i and height hi = 2ε/ti.
We include levels i ≥ 0 with thickness ti ≥ 4ε.

Each level i is further subdivided into diagonals indexed
by an integer j ∈ (1, 1/ti). In diagonal j, the coordinates
of the upper left corners of the hexagons satisfy x + y =
(2j + 1)ti. It remains to specify the functions that are
contained in each diagonal. Intuitively, we pack the maxi-
mum possible number of hexagons into each diagonal, while
leaving sufficient separation between them. If x + y =
(2j + 1)ti ≤ 1, we restrict x to integer multiples of hi +

√
ε,

and for x + y = (2j + 1)ti > 1, we restrict 1− y to integer
multiples of hi +

√
ε. In both cases, the projections of the
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hexagons of these functions onto an axis form disjoint inter-
vals of length hi that are separated by gaps of length

√
ε.

Finally, only if a hexagon Hx,y
t,h is fully contained in [0, 1]2,

the corresponding function fx,y
t,h is included in the hard set.

This construction is analyzed in the full version.

3. L1-TESTING OF LIPSCHITZ PROPERTY

3.1 Distance to Lipschitz: Characterization
In this section, we recall some basic definitions from [21,

9, 5] and present our characterization of the L1 distance to
the Lipschitz property.

Definition 3.1. Let f : D → R be a function with a
finite domain D, equipped with distance dD, and let x, y be
points in D. The pair (x, y) is violated by f if |f(x)−f(y)| >
dD(x, y). The violation score of (x, y), denoted vsf (x, y), is
|f(x)−f(y)|−dD(x, y) if it is violated and 0 otherwise. The
violation graph Gf of function f is the weighted undirected
graph with vertex set D, which contains an edge (x, y) of
weight vsf (x, y) for each violated pair of points x, y ∈ D.

Let Lip be the set of Lipschitz functions f : D → R. The
following lemma characterizes L1(f,Lip), the absolute L1

distance from f to Lip, in terms of matchings in Gf .

Lemma 3.1 (Characterization). Consider a function
f : D → R, where D is a finite metric space. Let M be
a maximum weight matching in Gf . Then L1(f,Lip) =
vsf (M), where vsf (M) denotes the weight of M .

Proof. It has already been observed that L1(f,Lip) ≥
vsf (M) for any matching M in Gf [2, Lemma 2.3]. To show
the second needed inequality, let g be a Lipschitz function
closest to f , that is, satisfying L1(f, g) = L1(f,Lip). We will
construct a matching M in Gf such that L1(f, g) = vsf (M).
We start by constructing a matching M ′ of weight L1(f, g)
in a bipartite graph related to Gf , and later transform it to
the matching of the same weight in Gf .

Definition 3.2. For each operation op ∈ {<,>,=}, de-
fine a point set Vop = {x ∈ D | f(x) op g(x)}.

Definition 3.3 (bipartite graph BGf ). BGf is a bi-
partite weighted graph. The nodes of BGf are points in D,
except that we make two copies, called x≤ and x≥, of ev-
ery point x ∈ V=. Nodes are partitioned into V≥ and V≤,
where part V≥ = V> ∪ {x≥ | x ∈ V=} and, similarly, part
V≤ = V< ∪ {x≤ | x ∈ V=}. The set BEf of edges of BGf
consists of pairs (x, y) ∈ V> × V≤ ∪ V≥ × V<, such that

g(x)− g(y) = dD(x, y).

Metric dD is extended to duplicates: dD(x≤, y) = dD(x≥, y)
= dD(x, y), and the weights vsf (x, y) are defined as before.

Observe that for every edge (x, y) in BGf , by definition,

f(x) ≥ g(x) > g(y) ≥ f(y) and (2)

vsf (x, y) = f(x)− f(y)− dD(x, y)

= f(x)− f(y)− (g(x)− g(y))

= |f(x)− g(x)|+ |f(y)− g(y)|. (3)

Later, we will show that BGf contains a matching M ′ that
matches every x ∈ V< ∪ V>. By (3),

vsf (M ′) =
∑

(x,y)∈M′
vsf (x, y) =

∑
x is matched in M′

|f(x)− g(x)|

=
∑

x∈V<∪V>

|f(x)− g(x)| = ‖f − g‖1 = L1(f,Lip).

Next we show how to transform a matching M ′ in BGf
into a matching M in Gf , such that vsf (M) = vsf (M ′). We
first remove from M ′ all edges of weight 0. Then we replace
each x≤ and x≥ with x. Finally, we handle the cases when
both x≤ and x≥ were replaced with x. If this happens,
M ′ contains matches (y, x≤) and (x≥, z), and we replace
them with a single match (y, z). By (2), f(y) > f(x) >
f(z). Since (y, x) and (x, z) are violated pairs, vsf (y, z) =
vsf (y, x) + vsf (x, z). Thus, vsf (M) = vsf (M ′), as claimed.

Now it suffices to show that BGf contains a matching
M ′ that matches every x ∈ V< ∪ V>. By Hall’s marriage
theorem, it enough to show that whenever A ⊆ V< or A ⊆
V> we have |A| ≤ |N(A)|, where N(A) is the set of all
neighbors of A in BGf . Suppose to the contrary that the
marriage condition does not hold for some set, and w.l.o.g.
suppose it is a subset of V>. Let A ⊂ V> be the largest set
satisfying |A| > |N(A)|.

Claim 3.2. If x, y ∈ V> and g(x)− g(y) = dD(x, y) then
N(y) ⊆ N(x).

Proof. Suppose that z ∈ N(y), i.e., f(z) ≤ g(z) and
g(y)− g(z) = dD(y, z). Using the triangle inequality, we get

g(x)− g(z) = [g(x)− g(y)] + [g(y)− g(z)]

= dD(x, y) + dD(y, z) ≥ dD(x, z).

Since g is Lipschitz, g(x)−g(z) ≤ dD(x, z). Therefore, g(x)−
g(z) = dD(x, z), and (x, z) is an edge of BGf .

Since A is the largest set that fails the marriage condition,
if x ∈ A, y ∈ V> and g(x) − g(y) = dD(x, y) then y ∈
A. Similarly, we can argue that if x ∈ N(A), y ∈ V≤ and
g(x)− g(y) = dD(x, y) then y ∈ N(A).

Thus, g(x) − g(y) < dD(x, y) for all x ∈ A ∪ N(A) and
y 6∈ A ∪N(A). Consequently, for some δ > 0, if we increase
g(x) by δ for every x ∈ A ∪N(A) then g remains Lipschitz.
This decreases L1(f, g) by δ(|A|−|N(A)|, a contradiction to
g being the closest Lipschitz function to f in L1 distance.

3.2 c-Lipschitz Tester for Hypergrids
In this section, we present our c-Lipschitz test for func-

tions on hypergrid domains and prove Theorem 1.4. Observe
that testing the c-Lipschitz property of functions with range
[0, 1] is equivalent to testing the Lipschitz property of func-
tions with range [0, 1/c] over the same domain. To see this,
first note that function f is c-Lipschitz iff function f/c is
Lipschitz. Second, function f is ε-far from being c-Lipschitz
iff f/c is ε-far from being Lipschitz, provided that the rela-
tive L1 distance between functions scaled correctly: namely,

for functions f, g : D → [0, r], we define d1(f, g) = ‖f−g‖1
|D|·r .

Thus, we can restate Theorem 1.4 as follows.

Theorem 3.3 (Thm. 1.4 restated). Let n, d ∈ N, ε ∈
(0, 1), r ∈ [1,∞). The time complexity of L1-testing the Lip-
schitz property of functions f : [n]d → [0, r] (nonadaptively
and with 1-sided error) with proximity parameter ε is O

(
d
ε

)
.
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Next we present the test (Algorithm 4) with the com-
plexity claimed in Theorem 3.3. We use the notation for
axis-parallel lines established before Algorithm 1.

Algorithm 4: Nonadaptive Lipschitz tester.

input : parameters n, d and ε; oracle access to
f : [n]d → [0, r].

1 repeat d d·8 ln 3
ε
e times:

2 Sample a uniform line ` from Ln,d. // Ln,d is the

set of axis-parallel lines in [n]d.
3 Let P r` be the set of (unordered) pairs (x, y) of points

from ` such that ‖x− y‖1 ≤ r.
4 Query a uniformly random pair of points from P r−1

` .
5 if |f(x)− f(y)| > ‖x− y‖1 then reject
6 accept

Algorithm 4 is nonadaptive. It always accepts all Lipschitz
functions. It remains to prove that a function that is ε-far
from Lipschitz in L1 distance is rejected with probability at
least 2/3. Since the algorithm is simply picking pairs (x, y)
from a certain set and checking if the Lipschitz property
is violated on the selected pairs, it suffices to show that a
large fraction of the considered pairs (x, y) is violated by
any function that is ε-far from Lipschitz. Observe that for
each ` ∈ Ln,d, the number of pairs x, y on the line ` is
n(n− 1)/2. If r < n then |P r−1

` | ≤ n(r − 1). I.e., |P r−1
` | ≤

n · min{n − 1, r − 1}. Note that |f(x) − f(y)| > ‖x − y‖1
implies that ‖x− y‖1 ≤ r − 1. I.e., all violated pairs on the
line ` are in P r−1

` . To complete the analysis of Algorithm 4,
it suffices to prove the following lemma. (See full version.)

Lemma 3.4. Let Pn,d bet the set of pairs x, y ∈ [n]d,
where x and y differ in exactly one coordinate. Consider
a function f : [n]d → [0, r] that is ε-far from Lipschitz w.r.t.
the L1 distance. Then the number of pairs in Pn,d violated
by f is at least εn

8d
·min{n− 1, r − 1} · |Ln,d|.
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