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Abstract— A central problem in releasing aggregate informa-
tion about sensitive data is to do so accurately while providing
a privacy guarantee on the output. Recent work focuses on the
class of linear queries, which include basic counting queries, data
cubes, and contingency tables. The goal is to maximize the utility
of their output, while giving a rigorous privacy guarantee. Most
results follow a common template: pick a “strategy” set of linear
queries to apply to the data, then use the noisy answers to these
queries to reconstruct the queries of interest. This entails either
picking a strategy set that is hoped to be good for the queries, or
performing a costly search over the space of all possible strategies.

In this paper, we propose a new approach that balances
accuracy and efficiency: we show how to improve the accu-
racy of a given query set by answering some strategy queries
more accurately than others. This leads to an efficient optimal
noise allocation for many popular strategies, including wavelets,
hierarchies, Fourier coefficients and more. For the important
case of marginal queries we show that this strictly improves on
previous methods, both analytically and empirically. Our results
also extend to ensuring that the returned query answers are
consistent with an (unknown) data set at minimal extra cost in
terms of time and noise.

I. INTRODUCTION

The long-term goal of much work in data privacy is to

enable the release of information that accurately captures the

behavior of an input data set, while preserving the privacy

of individuals described therein. There are two central, in-

terlinked questions to address around this goal: what privacy

properties should the transformation process possess, and how

can we ensure that the output is useful for subsequent analysis

and processing? The model of Differential Privacy has lately

gained broad acceptance as a criterion for private data re-

lease [7], [9]. There are now multiple different methods which

achieve Differential Privacy over different data types [1], [2],

[4], [6], [11], [12], [14], [16], [17], [22]. Some provide a

strong utility guarantee, while others demonstrate their utility

via empirical studies. These algorithms also vary from the

highly practical, to taking time exponential in the data size.

The output of the data release should be compatible with

existing tools and processes in order to provide usable results.

The model of contingency tables is universal, in that any

relation can be represented exactly in this form. That is, the

contingency table of a dataset over a subset of attributes

contains, for each possible attribute combination, the number

of tuples that occur in the data with that set of attribute values.

In this paper, we call such a contingency table the marginal

(distribution) of the database over the respective subset of

attributes. The set of all possible marginals for a relation is

captured by the data cube. Contingency tables and the data

cube in turn are examples of a more general class of linear

queries, i.e., each query is a linear combination of the entries

of the contingency table over all attributes in the input relation.

There has been much interest in providing methods to

answer such linear queries with privacy guarantees. In this

paper, we argue that these all fit within a general framework:

answer some set of queries S over the data (not necessarily

the set that was requested), with appropriate noise added to

provide the privacy, then use the answers to answer the given

queries A limitation of prior work based on a fixed strategy

S is that it applies uniform noise to the answers: the same

magnitude of noise is added to each query in S. However, it

turns out that the accuracy can be much improved by using

non-uniform noise: using different noise for each answer, while

providing the same overall guarantee. The main contribution

of this paper is to provide a full formal understanding of this

problem and the role that non-uniform noise can play.

Example. Figure 1(a) shows a table with 3 binary attributes

A, B and C. As in prior work [16], we think of a database D
as an N -dimensional vector x ∈ R

N , where N is the domain

size of D; i.e., if D has attributes A1, . . . , Ad, then N =
Πd

i=1|Ai|. We linearize the domain of D, so that each index

position i, 1 ≤ i ≤ N , corresponds to a unique combination

α of attribute values, and xi is the number of tuples in D that

have values α. In Figure 1(a), we linearized the domain in the

order 000, 001, . . . , 111. Here, position i = 2 corresponds to

the combination of values α = 001. Thus, x2 = 2 since D
contains two tuples (1 and 4) with these values.

Suppose that we want to compute two marginals over D:

the marginal over A, and the marginal over A,B. The query

marginals can be represented as a matrix Q, as depicted in

Figure 1(b), so that the answer is Qx: The first two rows

compute the marginal over A; i.e., the first row is the linear

query that counts all tuples t with t.A = 0; while the second

row counts all tuples with t.A = 1. Similarly, the third row

counts all tuples with t.A = 0 and t.B = 0, and so on.
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D:

tid A B C

1 0 0 1

2 0 1 1

3 0 0 0

4 0 0 1

5 1 1 0

x = (1,2,0,1,0,0,1,0)
(a) Table D for vector x

Q=















1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1















(b) Query Q for marginals on A and A,B

S=







1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1







(c) Strategy matrix S

R=















1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















(d) Recovery matrix R

Fig. 1. Example contingency table, query matrix, with strategy and recovery matrices.

Differentially private mechanisms answer Q in the form of

y = Qx + τ , where τ is a random vector whose distribution

provides a certain level of privacy. The error of the answer is

generally defined as the variance Var(y) [16], [22].

For example, one way to provide ε-differential privacy adds

uniform noise to each answer. Based on the structure of Q
in Figure 1(b), we can add noise with variance 8

ε2 to each

answer; see details in Section II). Over the six queries, the

sum of variances is 48
ε2 . However, we can do better with a

non-uniform approach. For example, we can add noise with

variance 2( 9
4ε )

2 to the answers for the first two rows of Q, and

noise with variance 2( 9
5ε )

2 to the remaining four answers, and

still provide ε-differential privacy. The sum of the six variances

is then 2 ·2( 9
4ε )

2+4 ·2( 9
5ε )

2 = 46.17/ε2. We can improve this

even further by changing how we answer the queries: we can

answer the first query Q1 by taking half of the first answer,

and adding half of the third and fourth answers. The resulting

variance of Q1 is

1
4 · 2

(

9
4ε

)2
+ 1

4 · 2
(

9
5ε

)2
+ 1

4 · 2
(

9
5ε

)2
= 5.77/ε2.

Similar tricks yield the same variance for all other answers, so

the sum of all six variances is now 34.6/ε2, a 28% reduction

over the uniform approach.

This example shows that we can significantly improve the

accuracy of our answers while preserving the same level of

privacy by adopting non-uniform noise and careful combi-

nation of intermediate answers to give the final answer. Yet

further improvement can result by choosing a different set of

queries to obtain noisy answers to. The problem we address

in this paper is how to use these techniques to efficiently and

accurately provide answers to such queries Q that meet the

differential privacy guarantee. This captures the core problems

of releasing data cubes, contingency tables and marginals. Our

results are more general, as they apply to arbitrary sets of

linear queries Q, but our focus is on these important special

cases. We also discuss how to additionally ensure that the

answers meet certain consistency criteria, i.e. there is some

x such that the query answers are Qx. Next, we study how

existing techniques can be applied to this problem, and discuss

their limitations.

The Strategy/Recovery approach. Mechanisms for minimiz-

ing the error of linear counting queries under differential

privacy have attracted a lot of attention. Work in the theory

community [2], [10], [11], [12], [13], [21] has focused on

providing the best bounds on noise for an arbitrary set of

such queries, in both the online and offline setting. However,

these mechanisms are rarely practical for large databases with

moderately high dimensionality: they can scale exponentially

with the size of their input.

Work in database research has aimed to deliver methods that

scale to realistic data sizes. Much of this work builds on basic

primitives in differential privacy such as adding appropriately

scaled noise to a numeric quantity from a specific random

distribution (see Section II). Repeating this process for multi-

ple different quantities, and reasoning about how the privacy

guarantees compose, it is possible to ensure that the full output

meets the privacy definition. The goal is then to minimize the

error introduced into the query answers (as measured by their

variance) while satisfying the privacy conditions.

Given this outline, we observe that the bulk of methods

using noise addition fit into a two-step framework that we

dub the ‘strategy/recovery’ approach:

• Step 1. Find a strategy matrix S and compute the vector

z = Sx+ν, where ν is a random noise vector drawn from

an appropriate distribution. Then z is the differentially

private answer to the queries represented by S.

• Step 2. Compute a recovery matrix R, such that Q = RS.

Return y = Rz as the differentially private answer to the

queries Q. The variance Var(y) is often used as an error

measure for the approach.

We show this method schematically in Figure 2. For exam-

ple, Figures 1(c) and 1(d) show a possible choice of matrices

S and R for the query matrix Q in Figure 1(b). In this case,

the strategy S computes the marginal on A,B; Step 1 above

adds random noise independently to all cells in this marginal.

The recovery R computes the marginal on A by aggregating

the corresponding noisy cells from the marginal on A,B (the

first two rows of R), and also outputs the marginal on A,B
(the last four rows of R).

We now show how prior work fits into this approach. In

many cases, the first step directly picks a fixed matrix for

S, by arguing that this is suitable for a particular class of

queries Q. For example, when setting S = I (hence R = Q),

the approach computes a set of noisy counts x̃i by adding

Laplace noise independently to each xi. The answer to any

query matrix Q is computed over these noisy counts, i.e., y =
Qx̃; this model was analyzed in [1]. By contrast, when S = Q
(and R = I), as discussed in [7], the approach adds noise to

the result of each query in Q, i.e., y = Qx+ ν.

Several more sophisticated strategies have been designed,
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Compute
recovery R

Compute
strategy S

y

Var(y)

STEP 1 STEP 2

Q, x

Fig. 2. Framework of prior work.

with the goal of minimizing the error Var(y) for vari-

ous query workloads. When Q consists of low-dimensional

range queries, [22] proposes S to be the wavelet transform,

while [14] studies the strategy S corresponding to a hierar-

chical structure over x. However, as shown in [16], neither

of these strategies is particularly accurate for other types

of queries. For marginals, [1] chooses S to be the Fourier

transform matrix, and [6] employs a clustering algorithm over

the queries to compute S. Figures 1(c) and 1(d) depict the

output computed via [6] on query matrix Q (Figure 1(b)).

Other work has suggested the use of random projections as the

strategy matrix, connecting to the area of sparse recovery [5],

[18]. Many of these choices are relatively fast: that is, S and

S−1 can be applied to a vector of length N in time O(N)
or O(N logN) in the case of wavelet and Fourier transforms,

respectively. This is important, since real data can have large

values of N , and so asymptotically higher running time may

not be practical. A limitation of [6] is that the clustering step

is very expensive, limiting the scalability of the approach.

An important technical distinction for the strategy/recovery

approach is whether or not the strategy S is invertible. If it

is (e.g., when S is the Fourier or wavelet transform), then the

recovery matrix R = QS−1 is unique, and the query answer

y is guaranteed to be consistent (see Definition 2.3). Then the

error measure Var(y) depends only on S (and Q). However,

if S is not invertible, then there can be many choices for R,

and Var(y) depends on both S and R. The optimal recovery R
that minimizes Var(y) (for a fixed S) can be computed via the

least squares method [14], [16] and Var(y) has a closed-form

expression as a function of S. Using this fact, Li et al. [16]

study the following optimization problem: Given queries Q
and a formula for Var(y) as a function of S, compute the

strategy S that minimizes Var(y). This is a tough optimization,

since the search is over all possible strategy matrices S.

Their matrix mechanism uses a rank-constrained semidefinite

program (SDP) to compute the optimal S. Solving this SDP

is very costly as a function of N , making it impractical for

data with more than a few tens of entries1.

In summary, the search for a strategy matrix S is currently

done either by picking one that we think is likely to be “good”

for queries Q, or by solving an SDP, which is impractical even

for moderate size problems.

Our Contributions. Most of the prior approaches discussed

above use the uniform “noise budgeting” strategy, i.e., each

value νi of the noise vector is (independently) drawn from

the same random distribution. The scaling parameter of this

1Independent work has tried to improve the efficiency of such mechanisms
via convex optimization and spectral methods [23], [17]

Compute

strategy S

Initialize 

recovery R

STEP 1 STEP 2

Compute

noise budgets

Compute

recovery R
Var(y)

STEP 3

Q, x
y

Fig. 3. Our proposed framework.

distribution depends on the desired privacy guarantee ε, as well

as the “sensitivity” of the strategy matrix S (see Section II).

In the extended version of [16], the authors prove that

any non-uniform noise budgeting strategy can be reduced

to a uniform budgeting strategy by scaling the rows of S
with different factors. However, computing the optimal scaling

factors this way is impractical, as it requires solving an SDP.

The only efficient method for computing non-uniform noise

budgets we are aware of applies to the special case when

Q is a range query workload [4]. There, S corresponds to a

multi-dimensional hierarchical decomposition, and recovery R
corresponds to the greedy range decomposition. The resulting

budgeting is not always optimal.

In this paper we show how to compute the optimal noise

budgets in time at most linear in the sizes of R and S, for

a large class of queries Q (including marginal queries), and

for most of the matrices S considered in prior work. This

includes the Fourier transform, the wavelet transform, the

hierarchical structure over x, and any strategy consisting of a

set of marginals (in particular, the clustering strategy of [6]).

The overall framework introduced is depicted in Figure 3:

Given strategy matrix S and recovery matrix R, we compute

optimal noise budgets εi for each query, and draw each noise

value νi from a random distribution that depends on εi (Step

2). We then derive a new recovery matrix R that minimizes

Var(y) (Step 3), for the noise budgets computed in Step 2.

The most general approach would be to provide a math-

ematical formulation for the following global optimization

problem: Given the query matrix Q, compute the strategy S,

the recovery R, and the noise budgets εi that minimize Var(y).
However, this problem essentially reduces to that addressed by

the matrix mechanism [16], and requires solving an SDP.

Instead, we study how to efficiently solve optimization

problems where two out of the three parameters S, R and {εi}i
are fixed. In Section III-A, we solve the optimization problem:

Given a decomposition of query matrix Q into strategy S
and recovery R, compute the optimal noise budgets εi that

minimize Var(y). We provide a formula for Var(y), as a

function of S and R. In Section III-B, we apply the generalized

least squares method to solve the following problem: Given

the query matrix Q, the strategy S, and the noise budgets

εi, compute the recovery R that minimizes Var(y). Following

the steps in this framework provides efficient algorithms with

low error—the time overhead is less than 1 second in our

experiments (Section V). We also consider ways to generate

a consistent output y of Step 3 with small (but non-optimal)

error under other metrics; see Sections III-C and IV-C. Our

approach strictly improves over the previous result from [6].

Section IV shows that for the subclass of linear queries that

has been most extensively studied in the differential privacy
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literature, which is the set of low-order k-way marginals, our

approach achieves state-of-the-art bounds on the running time

while giving provably better bounds on the magnitude of noise

per query. This follows from the analysis of the optimum non-

uniform noise allocation in the Fourier basis. This basis plays

an important role in the analysis of k-way marginals because

it allows to express them without redundancy. Using Fourier

basis we achieve consistency for noise allocation strategies in

other bases more efficiently than the LP-based approach of [1].

To summarize, our contributions are as follows:

• We propose a framework for minimizing the error of

differentially private answers, via a combination of noise

budgeting and computation of an improved recovery ma-

trix. This improves on the accuracy of existing strategies,

at minimal computation cost.

• We develop fast algorithms within this framework for

marginal queries. Our algorithms compute consistent

answers. In particular, when Q is the set of all k-way

marginals, we give asymptotic bounds on the error of

our mechanism; we are not aware of any such analysis

for the matrix mechanism. As a by-product, our analysis

also improves the error bound for the uniform noise case.

• We conduct an extensive experimental study on marginal

query workloads and show that our framework reduces

the error of existing strategies (including the Fourier

strategy [1] and the Cluster strategy [6]).

Organization. Section II introduces the necessary definitions

for describing our framework. The optimization results re-

quired by Steps 2 and 3 are developed in Section III. Sec-

tion IV decribes the application of our framework to marginal

queries, giving bounds on error and consistent results. Our

experimental study is presented in Section V, and we conclude

in Section VI.

II. DEFINITIONS

We begin by recalling the definition of differential privacy

and some fundamental mechanisms which satisfy this defini-

tion.

Definition 2.1 (Differential privacy [9], [8]): A

randomized algorithm A satisfies (ǫ, δ)-differential privacy if

for all databases D1 and D2 differing in at most one element,

and all measurable subsets S ⊆ Range(A),

Pr[A(D1) ∈ S] ≤ eǫ · Pr[A(D2) ∈ S] + δ.
We say that an algorithm satisfies ǫ-differential privacy if it

satisfies (ǫ, 0)-differential privacy.

Definition 2.2 (Lp-sensitivity): For p ≥ 1 let the Lp-

sensitivity ∆p(f) of a function f : D → R
q be defined as:

∆p(f) = max
D1,D2

‖f(D1)− f(D2)‖p,

for all D1 and D2 differing in at most one element. Here, ‖ · ‖p
denotes the standard Lp norm, i.e., ‖x‖p = (

∑n
i=1 |xi|p)1/p

for x ∈ R
n.

We rely on the following two basic mechanisms to construct

differentially private algorithms:

Theorem 2.1 (Laplace mechanism [9]): If f is a function

f : D → R
q , then releasing f with additive q-dimensional

Laplace noise with variance 2
(

∆1(f)
ǫ

)2

in each component

satisfies ǫ-differential privacy.

Theorem 2.2 (Gaussian mechanism [8], [19]): If f is a

function f : D → R
q , then releasing f with additive q-

dimensional Gaussian noise with variance
(

2∆2
2(f)

log(2/δ)
ǫ2

)

in each component satisfies (ǫ, δ)-differential privacy.

Query workloads, consistency, strategy and recovery. As

mentioned in Section I, we represent the database as a vector

x ∈ R
N and the query workload as a matrix Q ∈ R

q×N : each

row Qi·, 1 ≤ i ≤ q, is a linear query over database x. It is easy

to see that the sensitivity of Q is ∆p(Q) = maxNj=1 ‖Q·j‖p,
where Q·j denotes the jth column of Q.2 One differentially

private answer to Q is a vector y = Qx + τ , where τ ∈ R
q

is the noise vector drawn from an appropriate (Laplace or

Gaussian) distribution. Our formal goal is to minimize the

variance of a given linear functional aT · Var(y) for some

fixed vector a ∈ R
q
+, while guaranteeing differential privacy.

For example, if a =
−→
1 we minimize the sum of the variances

of noise over all queries. In particular, we study workloads Q
that consist of marginals over x, such as the set of all k-way

marginals, for some small integer k.

Definition 2.3: A noisy output y = Qx+ τ is consistent if

there exists at least one vector xc such that y = Qxc.
We decompose a query workload Q into a strategy matrix

S ∈ R
m×N , and a recovery matrix R ∈ R

q×m, such that

Q = RS. The query answer y is then computed as y = Rz,

where z = Sx+ν is the noisy answer to S (hence, τ = Rν). In

general, there are many possible ways to pick R and S given

Q, and our goal will be to minimize the resulting Var(y).

III. OUR FRAMEWORK

In this section we solve the optimization problems required

by Steps 2 and 3 of our framework from Figure 3.

A. Optimal Noise Budgeting (Step 2)

A novel part of our scheme is a special purpose budgeting

mechanism: For each row Si· in the strategy S, we release

zi = Si·x+ νi, where νi is drawn from a Laplace distribution

that depends on a value εi. We show how to choose the values

εi optimally so that the overall method satisfies ε-differential

privacy and the resulting noise is minimized. We also design

an approach based on grouping rows of the strategy matrix S,

which allows us to compute the optimal εi’s efficiently.

Proposition 3.1: Let S be an m × N strategy matrix, and

let ε1, . . . , εm be a set of m non-negative values. Define the

noisy answer to S to be an m-dimensional vector z such that

zi = Si·x+ νi, 1 ≤ i ≤ m.
(i) If νi is drawn from the Laplace distribution with vari-

ance 2
ε2
i

, then z satisfies α-differential privacy, where α =

2maxNj=1(
∑m

i=1 |Sij |εi).
2We assume that each individual contributes a weight of 1 to some entry

of x, in line with prior work. Other cases can be handled by rescaling the
sensitivity accordingly.
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(ii) If νi is drawn from the Gaussian distribution with vari-

ance 2 log(2/δ)
ε2
i

, and α = 2maxNj=1

√

∑m
i=1 S

2
ijε

2
i , z satisfies

(α, δ)-differential privacy.

Proof: We decompose S as D−1DS where D is the

diagonal matrix D = diag(ε1, . . . εm). We now consider

the Lp sensitivity of the function f(x) = (DS)x. From

Definition 2.2, we have

∆p(f) ≤ 2
N

max
j=1

‖(DS)·j‖p = 2
N

max
j=1

(
m
∑

i=1

|Sijεi|p)1/p

Thus, adding noise with variance proportional to (2
∆p(f)

α )2

provides α-differential privacy (via Theorem 2.1 with p =
1) or (α, δ)-differential privacy (via Theorem 2.2 with p =
2). Finally, multiplying by D−1 has the effect of rescaling

the variance in each component: the ith component now has

variance proportional to (
∆p(f)
αεi

)2. Setting α = ∆p(f) for p =
1 or p = 2 and applying the correct scaling constants gives

the claimed result.

Recall that the output is computed as y = Rz. Our goal is

to choose values εi that minimize the variance aT Var(y) =
aT Var(Rν). We detail this for Laplace mechanism:

aT ·Var(Rν) = 2

q
∑

i=1

ai

m
∑

j=1

R2
ij

ε2j
= 2

m
∑

i=1

1

ε2i

q
∑

j=1

ajR
2
ji.

Let bi = 2
∑q

j=1 ajR
2
ji. By Proposition 3.1, it follows that the

optimal noise budgeting {εi} is the solution to the following

optimization problem:

Minimize:
∑m

i=1
bi
ε2
i

(1)

Subject to:
∑m

i=1 |Sij |εi ≤ ε, 1 ≤ j ≤ N. (2)

ǫi ≥ 0, 1 ≤ i ≤ m (3)

Because all bi’s are non-negative, the objective function is

convex. The body defined by the linear inequalities is also

convex. The resulting problem can thus be solved using a

convex optimization package that implements, e.g., interior

point methods. Such methods require time polynomial in m,

N, and the required accuracy of the solution [3].

Efficient Solution via Grouping. Convex optimization solvers

may require a large number of iterations and be too inefficient

for databases of moderate dimensionality. However, for most

of the frequently used strategy matrices, the optimization

problem can be significantly simplified, if we partition the

rows of the strategy matrix S into groups, and define the

corresponding values εi to be the same for all rows in a group.

We show that the groups can be chosen in such way that all

conditions
∑m

i=1 |Sij |εi ≤ ε become identical once we set the

εi’s to be equal in each group, which leads to a closed form

solution. This approach was implicitly used in [4]. We show

that this concept can be applied to a larger class of strategy

matrices. The optimal solution for the simplified problem is a

feasible solution for the general problem. If recovery matrix R
satisfies a certain property (as is the case for all matrices we

consider), then the optimal solution for the simplified problem

is also guaranteed optimal for the general case. In particular,

we find optimal noise budgets for strategy/recovery methods

such as Fourier [1] and clustering [6].

Definition 3.1: Let S be an m×N strategy matrix. We say

that S satisfies the grouping property if there exists a grouping

function over its rows G : [m] → [g], g ≤ m, such that the

following two conditions are satisfied:

— row-wise disjointness: for any two rows i1, i2 of S with

G(i1) = G(i2) and for any column j, Si1jSi2j = 0;
— bounded column norm: for any group r, and for

any two columns j1, j2, we have maxi:G(i)=r |Sij1 | =
maxi:G(i)=r |Sij2 | = Cr.

The minimum g for which S has a grouping function G is

called the grouping number of S.

Together, the two conditions in Definition 3.1 imply that any

column of S contains at most one non-zero value from each

group, and that its magnitude is the same (within a group) for

all columns. Hence, not every S can meet this definition: while

we could put every row in a singleton group, we also then

require that the magnitude of all non-zero entries in the row are

identical. Nevertheless, as we show below, many commonly

used matrices are groupable.

Example. Matrix S in Figure 1(c) has grouping number g = 1:

each column has exactly one entry equal to 1, so C1 = 1. On

the other hand, if S = Q is the matrix in Figure 1(b), the

grouping number is 2: we define one group containing the

first two rows, and another containing the last four rows. We

have C1 = C2 = 1. Note that, e.g., the first and third rows

cannot be grouped together, since Q11Q31 = 1 6= 0. We now

apply this definition to the other strategy matrices proposed:

Base counts. As noted in the introduction, directly materializ-

ing the noisy version of x is equivalent to S = I. In this case,

all rows form a single group; hence, g = 1 and C1 = 1.

Collections of marginals. When S is a set of marginals, all

rows that compute the cells in the same marginal can be

grouped together, as in the above example. Hence, the number

of groups g is the number of marginals computed; and Cr = 1
for each group r.

Hierarchical structures. When S represents a hierarchy over

x, all rows that compute the counts at the same level in

the hierarchy form one group. Hence, the grouping number

g is the depth of the hierarchy and all Cr values are 1.

Specifically, when S represents a binary tree over x, the

grouping number is g = ⌈log2 N⌉. The same essentially holds

for the one-dimensional Haar wavelet (here, g = ⌈log2 N⌉+1).

For higher dimensional wavelets, the grouping number grows

exponentially with the dimension of the wavelet transform.

Fourier transform. The Fourier transform (discussed in more

detail in Section IV-A) is dense: every entry is non-zero and

has absolute value 2−d/2. In this case, each row forms its own

group, the grouping number is N , and Cr = 2−d/2 for any

group r.

Sparse random projections. Sketches are sparse random pro-

jections that partition the data x into buckets, repeated t
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times [5]. All entries in the sketch matrix S are {−1, 0,+1}.

In this case, all rows that define one particular partition of the

data form one group, so g = t and Cr = 1.

Arbitrary strategies S. If S is groupable, we can greedily find

a grouping as follows: start a group with an arbitrary row,

and try to add each remaining row to existing groups; if a

row cannot be added to an existing group, a new group is

created for it. While this may not result in a minimum g,

any grouping suffices for our purposes. We do not discuss the

greedy approach further, since all the strategies we study can

be grouped directly as discussed above.

Definition 3.2: Let S be an m × N strategy matrix with

grouping function G. Let R be a corresponding q×m recovery

matrix. We say that R is consistent with G if for any rows

i1, i2 of S with G(i1) = G(i2), we have bi1 = bi2 (where bi
= 2

∑q
j=1 ajR

2
ji are as in objective function (1)).

When Q is a set of marginals and a =
−→
1 , it is easy to

verify that R is consistent with the optimal grouping of S,

for all the choices of S considered in prior work: S = I ,

S = Q, S =Fourier transform, and S = strategy marginals

computed by clustering [6] (here, R aggregates cells of the

centroid marginal to compute each of the marginals assigned

to a cluster).

The next result follows directly from the properties of the

grouping function.

Lemma 3.2: Let S be a strategy matrix with grouping

function G. There is a feasible solution to the optimization

problem (1) – (3) such that for each group r and for all pairs

of rows i1, i2 with G(i1) = G(i2) = r, we have εi1 = εi2 .
Moreover, all privacy conditions (2) are equivalent, and can

be satisfied with equality.

If R is consistent with G, then the above solution is optimal

for the problem defined by (1) – (3).

Proof: Let η = η1, . . . , ηg be the noise budgets cor-

responding to the g groups of S; i.e., all ε values for the

rows in group 1 are equal to η1, etc. Because of the grouping

property, each condition (2) becomes
∑g

i=1 Ciηi ≤ ε, where

Ci is the value defined by the bounded column norm for the

group i (recall Definition 3.1). Since the objective function

is a minimization, we can make this inequality an equality.

Clearly, {ηi}i are a feasible solution for (1) – (3).

If R is consistent with G, we can change any optimal

solution of (1) – (3) into a solution in which all ε values in

a group are equal, without increasing the objective function.

We omit a formal proof here.

Thus, when S has grouping function G, we can write a

simpler optimization problem for noise budgeting:

Minimize:
∑g

i=1

∑
r:G(r)=i

br

η2
i

(4)

Subject to:
∑g

i=1 Ciηi = ε. (5)

ηi ≥ 0, 1 ≤ i ≤ m (6)

Since there is now just a single constraint on the ηis, we

can solve this via a simple Lagrange multiplier method. The

corresponding Lagrange function is:

Λ(λ, η) =
(

g
∑

i=1

∑
r:G(r)=i

br

η2
i

)

+ λ
(

g
∑

i=1

Ciηi − ε
)

.

Setting the partial derivatives ∂
∂ηi

to zero, we obtain

ηi =
(

2
λCi

∑

r:G(r)=i br
)1/3

. By the privacy constraint (5),
g
∑

i=1

(

2C2
i

λ

∑

r:G(r)=i br

)1/3

= ε and thus:

λ = 2
ε3

(

g
∑

i=1

(

C2
i

∑

r:G(r)=i

br
)1/3)3

Corollary 3.3: In the case when all values Ci are equal to

the same value C the optimum value of the objective function

is equal to C2

ǫ2

(

∑g
i=1 s

1/3
i

)3

, where si =
∑

r : G(r)=i br.

For (ǫ, δ)-differential privacy the corresponding value of the

objective function is equal to
2C2 log(2/δ)

ǫ2

(
∑g

i=1

√
si
)2

.

Lemma 3.2 implies the following.

Theorem 3.4: Let S be a strategy matrix with grouping

function G, and R be a corresponding recovery matrix consis-

tent with G. Then the solution to the optimization problem (4)

– (6) is the optimal noise budgeting for S and R.

As discussed above, when Q is a set of marginals, all

the strategy/recovery matrices proposed in prior work fit

the conditions of Theorem 3.4, and thus their accuracy can

be improved via optimal noise budgeting. Observe that the

optimization problem (4) – (6) can be solved reasonably fast:

given R, S and a grouping of S, we can derive the vector

of bi values in time linear in the size of R, i.e., in O(qm).
For particular S (e.g. the Fourier matrix), the cost can be even

lower, due to the symmetric structure of S and R. Finally, all

εi values, as well as Var(y), can be computed in O(m) time.

B. Optimal Recovery Matrix (Step 3)

Given S ∈ R
m×N and the noise parameters εi, we wish to

compute a matrix R ∈ R
q×m such that Q = RS and Var(y)

is minimized. Recall that y = Rz = R(Sx + ν), where νi
is drawn from the Laplace distribution of variance 2

ε2
i

, as in

Section III-A (the case of Gaussian distribution is similar). As

we show below, the resulting y will also be consistent.

We derive R via least squares statistical estimators. More

precisely, given z = Sx+ν, we first compute an estimate x̂ of

x which is linear in z and has minimum variance. The vector

x̂ is called the optimal (generalized) least squares solution. As

we show below, x̂ = Gz for some matrix G. We then define

R = QG and y = Rz = Qx̂. Similar approaches have been

used in the past for finding an optimal R in the case of uniform

noise. We discuss the case of non-uniform noise budgets εi.
Let Σ be the covariance matrix of z: Σ = Cov(z) =

diag( 2
ε2
i

). Define U = Σ−1/2S; hence, rank(U) = rank(S).

For simplicity, we assume that rank(S) = N . The same

ideas as in [16, Section 3.3] can be used to handle the case

rank(S) < N ; see also [20] for further details. Then the LS

solution is computed as

x̂ = (UTU)−1UTΣ−1/2z.
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Since Σ is diagonal, Σ = ΣT . We obtain

(UTU)−1UT = (STΣ−1/2Σ−1/2S)−1STΣ−1/2

= (STΣ−1S)−1STΣ−1/2.

Thus, x̂ = (STΣ−1S)−1STΣ−1z.

Let G = (STΣ−1S)−1STΣ−1. We define R = QG, i.e.,

R = Q(STΣ−1S)−1STΣ−1. (7)

Note that y = Rz = Qx̂ is consistent, as per Definition 2.3

(with xc = x̂). By a well-known result from linear statistic

estimation [20], the following holds:

Lemma 3.5: Matrix R computed as in (7) minimizes

aT Var(y) (where y = Rz). Moreover, y is consistent and

unbiased, i.e., the expectation E[y] = Qx.

Observation 1: If S is an orthonormal basis (as with

wavelets, Fourier and identity strategies), we have ST = S−1.

This implies G = S−1 = ST , so R = QST .

The cost of finding R as above is relatively high, due to the

need to perform matrix inversion. While the diagonal matrix Σ
is trivial to invert, since Σ−1

ii = (Σii)
−1, the matrix STΣ−1S

is generally dense, so is more costly to invert.

C. Fast Consistency

The vector y = Rz = R(Sx+ν) computed via the optimal

recovery matrix R in Step 3 (Section III-B) has two important

properties: (i) y is consistent (Definition 2.3); and (ii) Var(yi)
is minimized for each 1 ≤ i ≤ q. Since E[yi] = Qi·x we

have Var(yi) = E[(yi − Qi·x)
2]. Thus, y achieves minimum

error for each query in expectation. As observed in [1], [6] for

practical applications it may be necessary to return a vector y1

which is consistent and minimizes a different error measure,

e.g., we may wish to minimize ‖y1 − Qx‖p. For example,

p = 1 implies that y1 minimizes the average error and p = ∞
minimizes maximum error.

In this section we show how to efficiently compute another

recovery matrix R1 such that y1 = R1z is consistent and ‖y1−
Qx‖p is small. This approach is particularly useful when the

query matrix Q ∈ R
q×N has q ≪ N . As we show below, we

significantly improve the running times of the approaches used

in [1], [6] for this case. The approach in [1], [6], translated in

our strategy/recovery framework, is described below.

Start by defining a recovery matrix R0 such that Q = R0S
and y0 = R0(Sx + ν) has bounded error ‖y0 − Qx‖p ≤
t. Usually, R0 is the recovery matrix from Step 2 of our

framework. For example, the matrix R0 in [6] is implied

by the clustering function over marginals, which heuristically

minimizes some Lp-error of the noisy answers. Next, compute

a consistent answer y1 that minimizes ‖y1− y0‖p. Recall that

y1 is consistent if there exists xc such that y1 = Qxc. Hence,

for p = 1 or p = ∞, y1 can be computed via a linear program

(LP) with variables corresponding to the entries of xc, and

consistency conditions expressed as linear constraints. Other

requirements can also be imposed on xc, e.g., integrality or

non-negativity. For p = 2, y1 is the solution to a least squares

problem (LS).

However, such an LP, resp. LS, uses at least N variables

corresponding to the entries in xc. When N is large (as is

usually the case), this leads to large linear programs. This issue

was reported as a bottleneck in the experimental evaluation

of [6]. We now propose a different LP, resp. LS, formulation

for the consistency problem, which requires at most q variables

(recall that q is the number of queries in the workload Q). This

leads to large improvements in running time when q ≪ N .

First, note that rank(Q) = q implies that any answer y ∈ R
q

is consistent. This is because the linear system Qxc = y admits

the solution xc = QT (QQT )−1y (rank(Q) = q implies that

QQT is invertible). In particular, y1 = y0 is consistent and

minimizes ‖y1 − y0‖p for any p.

Assume that rank(Q) = q′ < q. We pick q′ linearly

independent rows of Q, denoted as Q′ ∈ R
q′×N , and use them

to decompose Q as Q = CQ′ for some matrix C ∈ R
q×q′ .

Because Q′ has linearly independent rows, the above argument

implies that, for any y ∈ R
q′ , the linear system Q′xc = y

has a solution. Hence, any answer y is consistent for the

queries Q′. Then y1 = Cy is consistent for all queries Q:

y1 = Cy = CQ′xc = Qxc. We find y that minimizes

‖Cy − y0‖p and return Cy: For p = 1 and p = ∞, y is the

solution to an LP; for p = 2, y is the solution to a least squares

problem. In all cases, the number of variables is q′ < q ≪ N .

As observed in [1], the utility guarantee follows by the triangle

inequality. If ‖Qx− y0‖p ≤ t, then

‖y1 − y0‖p = min
y∈Rq′

‖Cy − y0‖p ≤ ‖CQ′x− y0‖p ≤ t.

Thus, the additional Lp-error introduced by consistency is at

most the Lp-error of the original noisy answer, i.e., the error

at most doubles.

When Q is a set of marginals, we can formulate the LP,

resp. LS, without explicitly computing rank(Q) or finding a

collection of linearly independent rows Q′. Rather, we use

the Fourier coefficients of the marginals. The discussion is

deferred to Section IV-C.

IV. CONSISTENT MARGINALS VIA FOURIER STRATEGIES

In this section, we focus on the case when all queries Q
correspond to marginals. Here, we show that the choice of S
as an appropriate Fourier matrix gives strong guarantees on

the variance, as well as providing consistent query answers.

A. Marginals and Fourier analysis

In this section we assume that all d attributes in the database

table are binary; for simplicity, let the domain of each attribute

be {0, 1}. We emphasize that this assumption is without loss

of generality: an attribute which has |A| distinct values can

be mapped to ⌈log |A|⌉ binary attributes (and we do so in

our experimental study). However, we present our results

with binary attributes to avoid overcomplicating the notation.

Consequently, there are N = 2d entries in the database vector

x, where each entry is indexed by some α ∈ {0, 1}d, and xα is

the number of entries in the database with attributes α; recall

the example in Figure 1(a).
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There are also 2d possible marginals (a.k.a. subcubes of the

data cube) of interest, corresponding to aggregations along a

subset of dimensions. For any α ∈ {0, 1}d, let Cα denote the

marginal over non-zero attributes in α, and let ‖α‖ denote the

number of non-zero entries in α, i.e., the dimensionality of

the marginal. Note that here α is the bit-vector indicator for

the attributes in the marginal. We will consistently use it as a

superscript in such cases, and as a subscript when it indexes

an entry in a vector.

We use the following notations, as in [1]: For any pair of

α, β ∈ {0, 1}d we write α ∧ β for the bit-wise intersection

of the pair, i.e. (α ∧ β)i = αi ∧ βi. The inner-product in

this space, 〈α, β〉, can also be expressed via the intersection

operator: 〈α, β〉 = ‖α∧β‖. We say that α is dominated by β,

denoted α � β, if α ∧ β = α.

The computation of a marginal Cα over the input can be

thought of as a linear operator Cα : R2d → R
2‖α‖

mapping

the full-dimensional contingency table to the marginal over

non-zero attributes in α, by adding relevant entries over the

attributes not in α. More precisely, for each β � α, the cell

β in the marginal Cα, denoted (Cαx)β , sums the entries in

the contingency table x whose attributes in α are set to values

specified by β: (Cαx)β =
∑

γ : γ∧α=β xγ .

Example. Let x be the vector in Figure 1(a). Assume we want

to compute the marginal Cα = C110, i.e., the marginal over

attributes A and B. Then the value in the cell (A = 0, B = 0)
is denoted by (C110x)000 (i.e., β = 000). The value in the

cell (A = 0, B = 1) is denoted by (C110x)010. Note that

000 � 110 and 010 � 110. On the other hand, 001 6� 110,

so there is no cell (C110x)001 in the marginal over A,B. So,

while the cell index β is d-dimensional, only the ‖α‖ bits

corresponding to non-zeros in α vary—the rest are held at 0.

Hence, there are only 2‖α‖ cell indexes in the marginal Cαx.

In this example, there are only 4 cells in C110x. By the above

formula, (C110x)000 = x000 + x001 = 3 and (C110x)010 =
x010 + x011 = 1.

The set of all marginals Cα with ‖α‖ = k is referred to

as the set of all k-way marginals. They are commonly used

to visualize the low-rank dependencies between attributes, to

build efficient classifiers from the data, and so on.

We use the Hadamard transform, which is the 2d-

dimensional discrete Fourier transform over the Boolean hy-

percube {0, 1}d. This allows us to represent any marginal as

a summation over relevant Fourier coefficients. The advantage

is that the number of coefficients needed for each marginal

is just the number of entries in the marginal. The Fourier

basis vectors fα for α ∈ {0, 1}d have components fα
β =

2−d/2(−1)〈α,β〉. The vectors fα form an orthonormal basis

in R
2d . We will use the following properties of Fourier basis

vectors and marginal operators in the Fourier basis (proofs can

be found in [1]):

Theorem 4.1: For all α, β ∈ {0, 1}d we have:

1) (Cαfβ)γ =
∑

η : η∧α=γ
fβ
η =

∑

η : η∧α=γ
(−1)〈β,η〉/2d/2.

2) Cαx =
∑

β�α

〈fβ , x〉Cαfβ

B. Bounds for marginals

The use of a Fourier strategy matrix was studied in [1],

under a uniform error budget. Here, we show that using a

non-uniform budgeting can provide asymptotically improved

results. We study the case when the query set Q corresponds

to a collection of ℓ marginals Cα1 , . . . , Cαℓ . For a given

marginal Cαi the accuracy bounds will be parametrized by

its dimensionality ‖αi‖, the total number of marginals ℓ
and the total number of Fourier coefficients corresponding to

the collection of marginals, denoted as |F|. Theorem 4.1(2)

implies that |F| = | ∪i {β : β � αi}|. If the random variable

corresponding to the differentially private value of a marginal

Cαx is denoted as C̃αx, then we state a bound on the expected

absolute error, E

[

‖Cαx− C̃αx‖1
]

to simplify presentation

and comparison with prior work. All our bounds can also

be stated in terms of the variance Var(C̃αx), or as high-

probability bounds.

The asymptotic bounds on error are easier to interpret in

the important special case of the set of all k-way marginals.

In this case because of the symmetry of the query workload,

the expected error in all marginals is the same. Table I

summarizes bounds on error in this case together with the

unconditional lower bounds for all differentially private al-

gorithms from [15]. While in the case of (ε, δ)-differential

privacy our upper bounds are almost tight with the lower

bounds from [15], for ε-differential privacy the gap is still

quite significant and remains a challenging open problem.

Our next result gives bounds on expected error of the

Fourier strategy with non-uniform noise. We omit the proof

for lack of space.

Lemma 4.2: For a query workload consisting of all k-way

marginals over data x ∈ R
2d the bounds on the expected error

of the Fourier strategy mechanism with non-uniform noise are

given as follows:

1. For ε-differential privacy the expected noise per marginal

is O
(

1
ε · k

√

(

d
k

)(

d+k
k

))

.

2. For (ε, δ)-differential privacy the expected noise per

marginal is O
(

1
ε ·

√

k
(

d+k
k

)

log(1/δ)
)

.

These bounds are summarized in Table I, along with

those that follow from other approaches.3 Using the Fourier

transform as the strategy matrix in our framework improves

substantially over prior bounds: strategies based on S = I or

S = Q incur factors exponential in d (so linear in N , the size

of the contingency table). In contrast, our bounds depend only

on k, and factors in d that are polynomial for constant k (the

region of most interest). That is, the noise depends on logN .

Time cost comparison. To directly compute a single k-way

marginal over d-dimensional data takes time O(2d), and so

computing all k-way marginals takes O(dk2d) naively. Com-

puting the Fourier transform of the data takes time O(d2d), and

deriving the k-way marginals from this takes time O(4k) per

marginal, i.e., O(d2d+4kdk) for all marginals [1]. We compare

3We derive a tighter bound for the Fourier stategy under uniform noise than
in [1], but details are omitted for space reasons.
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Strategy ε-privacy (ε, δ)-privacy

Base counts O( 1
ε
2(d+k)/2) [9] O( 1

ε
2(d+k)/2

√

log(1/δ)) [8]

Marginals O( 1
ε
2k

(d
k

)

) [1] O( 1
ε
2k

√

(d
k

)

log(1/δ)) [1]

Fourier coefficients (uniform noise) O( 1
ε
k
(d
k

)
√
2k) O( 1

ε

√

k2k
(d
k

)

log(1/δ)) [1]

Fourier coefficients (non-uniform noise) O( 1
ε
k
√

(d
k

)(d+k
k

)

) Lemma 4.2 O( 1
ε

√

k
(d+k

k

)

log(1/δ)) Lemma 4.2

Lower bound Ω̃( 1
ε

√

(d
k

)

) [15] Ω̃( 1
ε

√

(d
k

)

(1− δ/ε)) [15]

TABLE I

RELEASING ALL k-WAY MARGINALS FOR k < d/2. EXPECTED NOISE PER MARGINAL: E
[

‖Cβx− C̃β‖1
]

. THE TOTAL NUMBER OF RELEASED

MARGINALS IS
(d
k

)

AND THE TOTAL NUMBER OF FOURIER COEFFICIENTS REQUIRED TO COMPUTE THESE MARGINALS IS
∑k

i=0

(d
k

)

≤ k ·
(d
k

)

.

the cost of different strategies to these costs. Materializing

noisy counts (S = I) and aggregating them to obtain the k-

way marginals also takes time O(dk2d), as does materializing

the marginals and then adding noise (S = Q).

The clustering method proposed in [6] is more expensive,

due to a search over the space of possible marginals to output.

The cost is O(dkkmin(2ddk, 3d)): clearly as the dimensional-

ity grows, this rapidly becomes infeasible. However, across all

strategies, the step of choosing the non-uniform error budget

is dominated by the other costs, and so does not alter that

asymptotic cost.

C. Consistency via Fourier coefficients

In Section III-C we discussed a general approach for com-

puting consistent answers for a query workload Q ∈ R
q×N

with rank(Q) < q. The approach required explicitly finding

a set of rank(Q) linearly independent rows in Q and decom-

posing Q. We now show that when Q is a set of marginals we

can compute consistent answers without such expensive steps.

Instead, we ensure consistency by writing an LP that uses the

Fourier coefficients corresponding to the marginals in Q. Let

Q consist of ℓ marginals Cα1 , . . . , Cαℓ . We introduce variables

for the Fourier coefficients corresponding to these marginals,

denoted as F = {f̂β |∃i : β � αi}. To simplify notation,

we rename them as F = {f̂1, . . . , f̂m}, where |F| = m.

Marginals Cα1 , . . . , Cαℓ can be computed from F , using

formulas from Theorem 4.1:

(Cαi)γ =
∑

α�αi
f̂α (Cαifα)γ ,

for all i ≤ ℓ and γ � αi. We will index entries in the marginals

by pairs (i, γ), where γ � αi. Let the total number of entries

in marginals Cα1 , . . . , Cαk be equal to
∑ℓ

i=1 2
‖αi‖ = K. Let

R be the recovery matrix for the Fourier strategy: R ∈ R
K×m

with entries R(i,γ),α = (Cαifα)γ . Then (Cα1 , . . . , Cαℓ) =

R·(f̂1, . . . , f̂m). Suppose that we are given a set of inconsistent

noisy values of these marginals (C̃α1 , . . . , C̃αℓ). We formulate

the following optimization problem to find the consistent set

of marginals (C̄α1 , . . . , C̄αℓ) that is closest to the noisy values

in Lp-norm:

Minimize ‖(C̄α1 , . . . , C̄αk)− (C̃α1 , . . . , C̃αℓ)‖p
Subject to (C̄α1 , . . . , C̄αℓ) = R · (f̂1, . . . , f̂m)

For p = 2 this is gives a least squares problem, with m
variables and K constraints, which is expressed as:

Minimize ‖R · (f̂1, . . . , f̂m)− (C̃α1 , . . . , C̃αℓ)‖2.

For p = 1 and p = ∞, this gives an LP similar to [1].

The running time of this consistency step via least squares

only depends on the number of queries. For example, for the

case of all k-way marginals, we need to work with matrices of

size O(dk), and perform a constant number of multiplications

and inversions. In contrast, prior work required solving LPs

of size proportional to the size of the data, N = 2d, which

takes time polynomial in N .

V. EXPERIMENTAL STUDY

We performed an experimental study to compare the effi-

ciency and accuracy of the different methods on real data sets,

applied to the problem of releasing marginals.

Datasets. We studied performance on two real datasets:

Adult: The Adult dataset from the UCI Machine Learning

repository (http://archive.ics.uci.edu/ml/) has

census information on 32561 individuals. As in [6], we ex-

tract a subset of sensitive categorical attributes, for workclass

(cardinality 9), education (16), marital-status (7), occupation

(15), relationship (6), race (5), sex (2) and salary (2).

NLTCS: The National Long-Term Case Study from StatLib

(http://lib.stat.cmu.edu/), contains information

about 21576 individuals. Each record consists of 16 binary

attributes, which correspond to functional disability measures:

6 activities of daily living and 10 instrumental activities of

daily living.

Query workloads. The choice of query workloads in our

experimental study is motivated by an application of low-

order marginals to statistical model fitting. In this setting, the

typical set of queries consists of all k-way marginals (for some

small value of k) together with some subset of (k + 1)-way

marginals, chosen depending on the application. We consider

three different approaches:

1. Qk: all the k-way marginal tables.

2. Q∗
k: all the k-way marginal tables, plus half of all (k+1)-

way marginals.

3. Qa
k: all the k-way marginal tables, plus all (k + 1)-way

marginals that include a fixed attribute.
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(f) ADULT data, Qa
2

Fig. 4. Accuracy of marginal release on ADULT data

Evaluation metrics. We measure the average absolute error

per entry in the set of marginal queries. To show the utility of

these results, we scale each error by the mean true answer of

its respective marginal query, i.e., we plot it as a relative error.

Thus, a relative error of less than 1 is desirable, as otherwise

the true answers are dwarfed by the noise (on average). Note

that while the number of tuples in each dataset is relatively

small, our approaches do not depend on the tuple count, but

rather the dimensionality of the domain N = Πd
i=1|Ai|. Larger

datasets would only improve the quality metrics, while keeping

the running time essentially unchanged.

Algorithms Used. We present results for ǫ-differential privacy.

Results for (ǫ, δ)-differential privacy are similar, and are omit-

ted. We include seven approaches within the strategy/recovery

framework, based on choice of the strategy matrix, S. Here,

the notation S+ indicates that we use the non-uniform noise

allocation for strategy S as described in Section III-A, while

the corresponding S is with uniform noise.

• S = I — Add noise via Laplace mechanism directly to

base cells and aggregate up to compute the marginals.

Here, the optimal noise allocation is always uniform.

• S = Q — Add uniform (Q) or non-uniform (Q+) noise

to each marginal independently.

• S = F — Add uniform (F ) or non-uniform (F+) noise

to each Fourier coefficient, corresponding to the given

query workload.

• S = C — Add uniform (C) or non-uniform (C+) noise to

each marginal returned by the greedy clustering strategy

proposed in [6].

Our goal is to study the effects of non-uniform noise

budgeting over all strategies. The decision on which strategy

to use rests with the data owner. However, we show clear

tradeoffs between running time and accuracy for all strategies,

which can provide helpful hints.

To ensure consistency of the released marginals, we use the

Fourier analytic approach, described in Section IV-C.

A. Adult Dataset

Figure 4 shows the results on the Adult data set, for query

workloads Q1, Q
∗
1, Q

a
1 , Q2, Q

∗
2 and Qa

2 . The attributes in this

data set have varying cardinalities, but are encoded as binary

attributes as described in Section IV-A. We plot the results

on a logarithmic scale as we vary the privacy parameter ǫ, to

more clearly show the relative performance of the different

measures. Immediately, we can make several observations

about the relative performance of the different methods. On

this data, the naive method of materializing counts (I) is never

effective: the noise added is comparable to the magnitude of

the data in all cases. Across the different query workloads,
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(f) NLTCS data, Qa
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Fig. 5. Accuracy of marginal release on NLTCS data

choosing the strategy S = Q works generally well. In this

case non-uniform noise allocation can significantly improve

the accuracy. For example, over workload Q∗
1 (Figure 4(b)),

we see an improvement of 20-25% in accuracy.

For more complex queries which result in more marginals

of higher degree (Q∗
2 and Qa

2 , in Figures 4(e) and 4(f)

respectively), the accuracy is lower overall, and the noise is

greater than the magnitude of the data for more restrictive

settings of the privacy parameter ǫ. To some extent this can

be mitigated as the number of individuals represented in the

data increases: the noise stays constant as the value of the

counts in the table grows.

Across this data, we observe that while the non-uniform

approach improves the accuracy of the Fourier strategy, it

is inferior to other strategies. Although asymptotically this

strategy has good properties (as described in Table I), in this

case k is not very large, so the gap between the k and 2k

terms for constant k is absorbed within the big-Oh notation.

The running times of our methods were all fast: the Fourier

(F ) and Query (Q) methods took at most tens of seconds to

complete, while the clustering (C) took longer, due to the more

expensive clustering step.
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Fig. 6. Running time over NLTCS data

B. NLTCS data

Figure 5 shows the corresponding results on the binary

NLTCS data. Over all experiments, there is an appreciable

benefit to applying the optimal non-uniform budgeting. The

optimal budgeting case is reliably better than the uniform

version, for the same strategy matrix. There are occasional
inversions, due to the random nature of the mechanisms used,

but the trend is clear. The advantage can be notable: for

example, on Q∗
1 (Figure 5(b)) and Q∗

2 (Figure 5(e)), the error of
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the Fourier strategy is reduced 30-35% by using non-uniform

budgeting. For the clustering approach, the improvement is

smaller, but still measurable, around 5% on average. However,

recall that strategy C becomes infeasible on higher dimen-

sional data, due to its exponential cost.

Figure 6 shows the end-to-end running time of the different

methods. This demonstrates clearly the dramatically slow run-

ning time of the clustering method: reaching several hours to

operate on a single, moderate-sized dataset. As the dimension-

ality increases, this becomes exponentially worse. By contrast,

the time needed by the other strategies is negligible: always

less than a second, and typically less than a tenth of a second.

The optimization and consistency steps take essentially no

time at all, compared to the data handling and processing.

On the other hand, all methods have virtually constant time

as a function of the number of tuples in the data.

Returning to the accuracy, over the k = 1-way marginals

and variations, the approach of materializing the base counts

(I) is not competitive, while the clustering strategy (C)

achieves the least error. The more lightweight Fourier-based

approach achieves slightly more error, but is much more scal-

able. As the degree of the marginals increases (Q∗
2, Figure 5(e),

and Qa
2 , Figure 5(f)), the trivial solution of materializing the

base cells becomes more accurate. For workloads that are

made up of high-degree marginals, this method dominates the

other approaches, although such workloads are considered less

realistic.

VI. CONCLUDING REMARKS

We considered the problem of releasing data based on linear

queries, which captures the common case of data cubes and

marginals. We showed how existing matrix-based strategies

can be improved by using non-uniform noise based on the

query workload. Our results show that such non-uniform noise

results in significantly lower error across all cases considered.

Further, the cost of this is low, and the results can be made

consistent with minimal extra effort.

Other notions of consistency are possible within this frame-

work. For example, it is sometimes required that the query

answers correspond to a data set in which all counts are

integral and non-negative. This can be achieved when the

method actually materializes a noisy set of base counts x̂ (as

in the case of strategy I) by adding the constraints that x̂j ≥ 0
and rounding the results to the nearest integer. It remains to

show how to enforce such consistency constraints efficiently

when base counts are not explicitly materialized.

On the theoretical side, we have shown bounds on accurate

k-way release under differential privacy of O(kε

√

(

d
k

)(

d+k
k

)

).
An open problem is to close the gap between this and the

lower bound of Ω̃( 1ε

√

(

d
k

)

).
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