
Learning and Fourier Analysis

Grigory Yaroslavtsev
http://grigory.us

Slides at
http://grigory.us/cis625/lecture2.pdf

CIS 625: Computational Learning Theory

http://grigory.us/
http://grigory.us/cis625/lecture2.pdf
http://grigory.us/cis625/lecture2.pdf

Fourier Analysis and Learning

• Powerful tool for PAC-style learning under uniform
distribution over 0,1 𝑛

• Sometimes requires queries of the form 𝒇(𝑥)
• Works for learning many classes of functions, e.g:

– Monotone, DNF, decision trees, low-degree polynomials
– Small circuits, halfspaces, k-linear, juntas (depend on

small # of variables)
– Submodular functions (analog of convex/concave)
– …

• Can be extended to product distributions over
0,1 𝑛, i.e. 𝐷 = 𝐷1 × 𝐷2 ×⋯× 𝐷𝑛 where × means

that draws are independent

Recap: Fourier Analysis

• Functions as vectors form a vector space:

𝒇: −1,1 𝑛 → ℝ ⇔ 𝒇 ∈ ℝ2
𝑛

• Inner product on functions = “correlation”:

𝒇, 𝒈 = 2−𝑛 𝒇 𝑥 𝒈(𝑥)

𝑥∈ −1,1 𝑛

= 𝔼𝑥∼ −1,1 𝑛 𝒇 𝑥 𝒈 𝑥

• Thm: Every function 𝒇: −1,1 → ℝ can be uniquely
represented as a multilinear polynomial

𝒇 𝑥1, … , 𝑥𝑛 = 𝒇 𝑺 𝝌𝑺(𝑥)

𝑺⊆,𝑛-

• 𝒇 𝑺 ≡ Fourier coefficient of 𝒇 on 𝑺 = 〈𝒇, 𝝌𝑺〉

• 𝒇: 0,1 𝑛 → *0,1+

• 𝑷 = class of linear functions

• 𝑑𝑖𝑠𝑡 𝒇, 𝑷 = min
𝒈∈𝑷
 𝑑𝑖𝑠𝑡(𝑓, 𝑔)

• 𝝐-close: 𝑑𝑖𝑠𝑡 𝒇, 𝑷 ≤ 𝝐

Linearity Testing

⇒

Linear

Non-
linear

Linearity Tester

𝝐-close

Accept with
probability = 𝟏

Reject with

probability ≥
𝟐

𝟑

⇒

⇒

Don’t care

Local Correction

• Learning linear functions takes 𝒏 queries

• Lem: If 𝒇 is 𝝐-close to linear function 𝝌𝑺 then for
every 𝑥 one can compute 𝝌𝑺(𝑥) w.p. 1 − 2𝝐 as:

– Pick 𝑦 ∼ 0,1 𝑛

– Output 𝒇 𝑦 ⊕ 𝒇(𝑥 ⊕ 𝑦)

• Proof:

𝑃𝑟 𝒇 𝑦 ≠ 𝝌𝑺 𝑦 = 𝑃𝑟 𝒇 𝑥 ⊕ 𝑦 ≠ 𝝌𝑺 𝑥 ⊕ 𝑦 = 𝝐

By union bound:
𝑃𝑟 𝒇 𝑦 = 𝝌𝑺 𝑦 , 𝒇 𝑥 ⊕ 𝑦 = 𝝌𝑺 𝑥 ⊕ 𝑦 ≥ 1 − 2𝝐

Then 𝒇 𝑦 ⊕ 𝒇 𝑥 ⊕ 𝑦 = 𝝌𝑺 𝑦 ⊕ 𝝌𝑺 𝑥 ⊕ 𝑦 = 𝝌𝑺(𝑥)

Recap: PAC-style learning

• PAC-learning under uniform distribution: for a class
of functions 𝑪, given access to 𝒇 ∈ 𝑪 and 𝝐 find a
hypothesis 𝒉 such that 𝑑𝑖𝑠𝑡 𝒇, 𝒉 ≤ 𝝐

• Two query access models:

– Random samples (𝑥, 𝒇(𝑥)), where 𝑥 ∼ −1,1 𝑛

– Queries: (𝑥, 𝒇(𝑥)), for any 𝑥 ∈ −1,1 𝑛

• Fourier analysis helps because of sparsity in Fourier
spectrum

– Low-degree concentration

– Concentration on a small number of Fourier coefficients

Fourier Analysis and Learning

• Def (Fourier Concentration): Fourier spectrum
of 𝒇: −1,1 𝑛 → ℝ is 𝝐-concentrated on a
collection of subsets 𝔽 if:

 𝒇 𝑺 2 ≥ 1 − 𝝐

𝑺⊆ 𝑛 ,𝑺∈𝔽

• Thm (Sparse Fourier Algorithm): Given 𝔽 on
which 𝒇 ∶ −1,1 𝑛 → *−1,1+ is 𝝐/2-
concentrated there is an algorithm that PAC-
learns 𝒇 with 𝑂(𝔽 log |𝔽| /𝝐) random samples

Estimating Fourier Coefficients

• Lemma: Given 𝑺 and 𝑂 log
1

𝜹
/𝝐2 random samples

from 𝒇: −1,1 𝑛 → −1,1 there is an algorithm that

gives 𝒇 (𝑺) such that with prob. ≥ 1 − 𝜹:

𝒇 𝑺 − 𝒇 𝑺 ≤ 𝝐

• Proof:𝒇 𝑺 = 𝔼𝑥,𝒇 𝑥 𝝌𝑺(𝑥)-

• Given 𝑘 = 𝑂 log
1

𝜹
/𝝐2 random samples 𝑥𝑖 , 𝒇 𝑥𝑖

• Empirical average
1

k
× 𝒇 𝑥𝑖 𝝌𝑺(𝑥𝑖)

𝑘
𝑖 𝝐-close by a

Chernoff bound with prob. ≥ 1 − 𝜹

Rounding real-valued approximations

• Lem: If 𝒇: −1,1 𝑛 → −1,1 , 𝒈: −1,1 𝑛 → ℝ

such that 𝔼𝑥 𝒇 − 𝒈
2

2
≤ 𝝐. For 𝒉: −1,1 𝑛 →

−1,1 defined as 𝒉 𝑥 = 𝑠𝑖𝑔𝑛(𝒈(𝑥)):
𝑑𝑖𝑠𝑡 𝒇, 𝒉 ≤ 𝝐

• Proof: 𝒇 𝑥 ≠ 𝒈 𝑥 ⇒ 𝒇 𝑥 − 𝒈 𝑥 2 ≥ 1

𝑑𝑖𝑠𝑡 𝒇, 𝒉 = Pr

x
𝒇 𝑥 ≠ 𝒉 𝑥 =

𝔼𝑥 1𝒇 𝑥 ≠𝑠𝑖𝑔𝑛(𝒈 𝑥) ≤

𝔼𝑥 𝒇 − 𝒈
2

2
≤ 𝝐

Sparse Fourier Algorithm
• Thm (Sparse Fourier Algorithm):

Given 𝔽 such that 𝒇 ∶ −1,1 𝑛 → *−1,1+ is 𝝐/2-concentrated
on 𝔽 there is a Sparse Fourier Algorithm which PAC-learns 𝒇
with 𝑂(𝔽 log |𝔽| /𝝐) random samples.

• For each 𝑺 ∈ 𝔽 get 𝒇 𝑺 with prob. 1 − 1/10|𝔽|:

𝒇 𝑺 − 𝒇 𝑺 ≤ 𝝐/2 |𝔽|

• Output: 𝒉 = 𝑠𝑖𝑔𝑛(𝒈) where 𝒈 = 𝒇 𝑺 𝝌𝑺𝑺∈𝔽

𝒇 − 𝒈
2

2
= 𝒇− 𝒈 𝑺 𝟐

𝑺

=

 𝒇 𝑺 − 𝒇 𝑺
2
+𝑺∈𝔽 𝒇 𝑺 2 ≤𝑺∈𝔽

𝝐

2 |𝔽|

2

+
𝝐

2𝑺∈𝔽 ≤ 𝝐

Low-Degree Algorithm

• Some classes are 𝝐-concentrated on low degree
Fourier coefficients: 𝔽 = *𝑺: 𝑺 ≤ 𝒌+, 𝒌 ≪ 𝒏

• 𝔽 ≤ 𝑛𝒌

• Monotone functions: 𝒌 = 𝑂(𝑛/𝝐)

– Learning complexity: 𝑛 𝑂(
 𝑛/𝝐)

• Size-𝒔 decision trees: 𝒌 = 𝑂((log 𝒔)/𝝐)

– Learning complexity: n𝑂((log 𝒔)/𝝐)

• Depth-𝒅 decision trees: 𝒌 = 𝑂(𝒅/𝝐)

– Learning complexity: 𝑛𝑂(𝒅/𝝐)

Restrictions

• Def: For a partition (𝑱, 𝑱) of [n] and 𝒛 ∈ −1,1 𝑱

let the restriction 𝒇𝑱|𝒛: −1,1
𝑱 → ℝ be

𝒇𝑱|𝒛 𝑦 = 𝒇(𝑦, 𝒛)

where (𝑦, 𝒛) is a string composed of 𝑦 and 𝒛.

• Example:

𝒎𝒊𝒏 𝑥1, 𝑥2 = −
1

2
+
1

2
𝑥1 +

1

2
𝑥2 +

1

2
𝑥1𝑥2

𝑱 = 1 , 𝑱 = 2 , 𝒛 = 1 ⇒
𝒇𝑱|𝒛: −1,1 → −1,1 = 𝑥1

Fourier coefficients of restrictions

• Fourier coefficients of 𝒇𝑱|𝒛 can be obtained from the
multilinear polynomial by subsitution

• 𝒇 𝑱|𝒛 𝑺 = 𝒇 𝑺 ∪ 𝑻 𝝌𝑻(𝒛)𝑻⊆𝐽

• 𝔼𝒛 𝒇 𝑱|𝒛 𝑺 = 𝒇 𝑺

Take 𝑻 = ∅, otherwise 𝔼𝒛 𝝌𝑻 𝒛 = 0

• 𝔼𝒛 𝒇 𝑱|𝒛 𝑺
𝟐 = 𝒇 𝑺 ∪ 𝑻 2𝑻⊆𝐽

𝔼𝒛 𝒇 𝑱|𝒛 𝑺
𝟐 = 𝔼𝒛 𝒇 𝑺 ∪ 𝑻 𝝌𝑻 𝒛

𝑻⊆𝐽

𝟐

= 𝒇 𝑺 ∪ 𝑻 2

𝑻⊆𝐽

since 𝔼𝒛 𝝌𝑻 𝒛 𝝌𝑻′ 𝒛 = 0

Goldreich-Levin/Kushilevitz-Mansour

• Thm (GL/KM): Given query access to 𝒇: −1,1 𝑛 →
*−1,1+ and 0 < 𝝉 ≤ 1 GL/KM-algorithm w.h.p.
outputs 𝐿 = *𝑈1, … , 𝑈ℓ+:

– 𝒇 (𝑈) ≥ 𝝉 ⇒ 𝑈 ∈ 𝐿

– 𝑈 ∈ 𝐿 ⇒ 𝒇 𝑈 ≥ 𝝉/2

• Exercise: GL/KM + Sparse Fourier Algorithm: A
class 𝐶 which is 𝝐-concentrated on at most M sets
can be learned using 𝑝𝑜𝑙𝑦 M,

1

𝜖
, 𝑛 queries

– Every large coefficient 𝒇 (𝑈) ≥ 1/ 𝑴

• Corollary: Size-𝒔 decision trees are learnable with
𝑝𝑜𝑙𝑦(𝑛, 𝒔,

𝟏

𝝐
) queries

Estimating Fourier Weight via Restrictions

• Recall: 𝔼𝒛 𝒇 𝑱|𝒛 𝑺
𝟐 = 𝒇 𝑺 ∪ 𝑻 2𝑻⊆𝐽

• Lemma: 𝒇 𝑺 ∪ 𝑻 2𝑻⊆𝐽 can be estimated from

𝑂(1/𝝐2 log 1/𝛿) random samples w.p. 1 − 𝛿

• 𝒇 𝑺 ∪ 𝑻 2𝑻⊆𝐽 = 𝔼𝒛 𝒇 𝑱|𝒛 𝑺
𝟐 =

= 𝔼
𝒛∈*−1,1+𝑱

 𝔼𝒚∈*−1,1+𝑱 𝒇 𝒚, 𝒛 𝝌𝑺 𝒚
2

= 𝔼
𝒛∈*−1,1+𝑱

 𝔼𝒚,𝒚′∈*−1,1+𝑱 𝒇 𝒚, 𝒛 𝝌𝑺 𝒚 𝒇 𝒚′, 𝒛 𝝌𝑺 𝒚′

• 𝒇 𝒚, 𝒛 𝝌𝑺 𝒚 𝒇 𝒚′, 𝒛 𝝌𝑺 𝒚′ is a ±1 random variable
⇒ 𝑂(1/𝝐2 log 1/𝛿) samples suffice to estimate

GL/KM-Algorithm

• Put all 2𝑛 subsets of ,𝑛- into a single “bucket”

• At each step:

– Select any bucket 𝕭 containing 2𝑚 sets, 𝑚 ≥ 1

– Split 𝕭 into 𝕭1, 𝕭2 of 2𝑚−1 sets each

– Estimate Fourier weight 𝒇 𝑈 2
𝑈∈𝕭𝑖

 up to 𝝉𝟐/4 for

of each 𝕭𝑖

– Discard 𝕭1or 𝕭2 if its weight is ≤
𝜏2

2

• Output all buckets that contain a single set

GL/KM-Algorithm: Correctness

• Put all 2𝑛 subsets of ,𝑛- into a single “bucket”

• At each step:
– Select any bucket 𝕭 containing 2𝑚 sets, 𝑚 ≥ 1

– Split 𝕭 into 𝕭1, 𝕭2 of 2𝑚−1 sets each

– Estimate Fourier weight 𝒇 𝑈 2
𝑈∈𝕭𝑖

 up to 𝝉𝟐/4 for each 𝕭𝑖

– Discard 𝕭1or 𝕭2 if its weight is ≤
𝝉𝟐

2

• Output all buckets that contain a single set

Correctness (assuming all estimates up to 𝝉𝟐/4 w.h.p):
• 𝒇 (𝑈) ≥ 𝝉 ⇒ 𝑈 ∈ 𝐿: no bucket with weight ≥ 𝝉𝟐 discarded

• 𝑈 ∈ 𝐿 ⇒ 𝒇 𝑈 ≥ 𝝉/2: buckets with weight ≤ 𝝉𝟐/4 discarded

GL/KM-Algorithm: Complexity

• Put all 2𝑛 subsets of ,𝑛- into a single “bucket”

• At each step:
– Select any bucket 𝕭 containing 2𝑚 sets, 𝑚 ≥ 1

– Split 𝕭 into 𝕭1, 𝕭2 of 2𝑚−1 sets each

– Estimate Fourier weight 𝒇 𝑈 2
𝑈∈𝕭𝑖

 up to 𝝉𝟐/4 for each 𝕭𝑖

– Discard 𝕭1or 𝕭2 if its weight is ≤
𝝉𝟐

2

• Output all buckets that contain a single set

• By Parseval ≤ 4/𝝉2 active buckets at any time
• Bucket can be split at most 𝑛 times
• At most 4𝑛/𝝉2 steps to finish

GL/KM-Algorithm: Bucketing

• 𝕭𝑘,𝑺 = *𝑺 ∪ T: 𝑇 ⊆ *𝑘 + 1,… , 𝑛+ +, 𝕭𝑘,𝑺 = 2
𝑛−𝑘

• Initial bucket 𝕭0,∅

• Split 𝕭𝑘,𝑺 into 𝕭𝑘+1,𝑺 and 𝕭𝑘+1,𝑺∪*𝑘+1+

• Fourier weight of 𝕭𝑘,𝑺 = 𝒇 𝑺 ∪ 𝑻 2𝑻⊆*𝑘+1,… ,𝑛+

• 𝒇 𝑺 ∪ 𝑻 2𝑻⊆*𝑘+1,… ,𝑛+ estimated via restrictions

• Estimate each up to ±
𝝉𝟐

4
 with prob. 1 −

𝜏2

80𝑛
,

complexity 𝑂
1

𝝉𝟒
log

𝑛

𝝉

• All estimates are up to ±
𝝉𝟐

4
 with prob. 9/10

Thanks!

