Learning and Fourier Analysis

Grigory Yaroslavtsev
http://grigory.us

Slides at
http://grigory.us/cis625/lecture2.pdf

CIS 625: Computational Learning Theory

http://grigory.us/
http://grigory.us/cis625/lecture2.pdf
http://grigory.us/cis625/lecture2.pdf

Fourier Analysis and Learning

Powerful tool for PAC-style learning under uniform
distribution over {0,1}"

Sometimes requires queries of the form f(x)

Works for learning many classes of functions, e.g:
— Monotone, DNF, decision trees, low-degree polynomials

— Small circuits, halfspaces, k-linear, juntas (depend on
small # of variables)

— Submodular functions (analog of convex/concave)

Can be extended to product distributions over
{0,1}",i.e. D = D; X D, X --- X D,, where X means
that draws are independent

Recap: Fourier Analysis

* Functions as vectors form a vector space:
f{-1L1)">Re feR?
* |nner product on functions = “correlation”:

F.90 =27) fO9Q) = By anlf()g(0)]

xe{—1,1}"
* Thm: Every function f:{—1,1} — R can be uniquely
represented as a multilinear polynomial

[l) =) F)xs()
Scn]

* f(S) = Fourier coefficient of fon S = (f, xs)

Linearity Testing

f:10,1}" - {0,1}

P = class of linear functions
dist(f,P) = min dist(f, g)
geP

e-close: dist(f,P) < €

Linearity Tester

e-close

Accept with
—
probability = 1

— Don’t care

_— Reject with

winN

probability >

Local Correction

* Learning linear functions takes n queries

* Lem: If f is e-close to linear function)y then for
every x one can compute ¥q¢(x) w.p. 1 — 2€ as:

— Pick y ~ {0,1}"
—Output f(y) @ f(x D y)
* Proof:

Prif(y) # xsWI=Prlf(xDy) # xs(x D y)] =€
By union bound:
Prif() =xsW, fx®y) =xs(xDy)]l=1-2¢

Then f(Y) D fFx D y) =xs(y) O xs(x D y) = xs(x)

Recap: PAC-style learning

 PAC-learning under uniform distribution: for a class
of functions C, given accessto f € € and € find a
hypothesis h such that dist(f, h) < €

 Two query access models:
— Random samples (x, f(x)), where x ~ {—1,1}"
— Queries: (x, f(x)), forany x € {—1,1}"
* Fourier analysis helps because of sparsity in Fourier

spectrum

— Low-degree concentration
— Concentration on a small number of Fourier coefficients

Fourier Analysis and Learning

e Def (Fourier Concentration): Fourier spectrum

of f:{—1,1}"* - R s e-concentrated on a
collection of subsets F if:

Z f(S)?=>1-¢
sc[n],selF
 Thm (Sparse Fourier Algorithm): Given IF on
which f: {—1,1}"* - {—1,1}is €/2-
concentrated there is an algorithm that PAC-
learns f with O(|F|log |IF| /€) random samples

Estimating Fourier Coefficients

Lemma: Given S and O (log%/ez) random samples

from f:{—1,1}" - {—1,1} there is an algorithm that
gives f(S) such that with prob. > 1 — §:

f(S) —f(S)| <€
Proof:f (S) = E,[f(x)xs(x)]
Givenk =0 (log%/ez) random samples (x;, f(x;))

Empirical average % X Zﬁ‘f(xi)xs(xi) e-close by a
Chernoff bound with prob. > 1 — 46

Rounding real-valued approximations

¢ lem:If f:{—-1,1}" > {-1,1}, 9:{—-1,1}" > R

such that E, ” f— g||§] <eForh:{—-1,1}" -

{—1,1} defined as h(x) = sign(g(x)):
dist(f,h) < €

* Proof: f(x) # g(x) = |[f(x) —g(x)|* = 1

dist(f,h) = Pr(f(x) # h(x)] =

Ex[lf(x)isign(g(x))] <
[Ex [“f_g”zl =€

Sparse Fourier Algorithm

 Thm (Sparse Fourier Algorithm):

Given F such that f: {—1,1}"* - {—1,1} is €/2-concentrated
on F there is a Sparse Fourier Algorithm which PAC-learns f
with O (|IF| log |F| /€) random samples.

* Foreach S € F get f(S) with prob. 1 — 1/10|F|:
() = F(S)| < Ve/2y/|F|
* Output: h = sign(g) where g = Y. . f(S)xs

IF gl =) (F=9)(5)? =
S

2 T € 2 €
EseslF(5) = F) +zsemf<s>2szsem(L) ti<e

2 | |IF]

Low-Degree Algorithm

Some classes are e-concentrated on low degree
Fourier coefficients: IF = {S: |S| <k}, k < n

F| < nk
Monotone functions: k = 0(y/n/¢€)

— Learning complexity: n 0Gn/e)

Size-s decision trees: k = O((logs)/€)
— Learning complexity: n9((0gs)/€)
Depth-d decision trees: k = 0(d/€)

— Learning complexity: n0(4/€)

Restrictions

* Def: For a partition (J,]) of [n] and z € (—1,1Y
let the restriction f,: (—1,1}VI - Rbe

f]|z(y) =f(, 2z)
where (y, z) is a string composed of y and z.

 Example:

| 11 1 1
mln(xl,xz) — _E + Exl + EXZ + Exl.XZ

J=(1},]={2}z=1>
i (-1 - (11} = x,

Fourier coefficients of restrictions

* Fourier coefficients of f;, can be obtained from the
multilinear polynomial by subsitution

* £112(8) = Erc F(S U xr(2)

° Ez[fllz(s)] — f(S)
Take T = @, otherwise E,|x+(z)] =0

° Ez[fﬂz(s)z] — z_:Tg]_f(S U T)Z

-
E,[f)1.(5)*] = E, (Z f(su T)m(z)) = > FsuTy?

TC] TS)

since E,[xr(2)xr/(2)] = 0

Goldreich-Levin/Kushilevitz-Mansour

* Thm (GL/KM): Given query accessto f:{—1,1}" —
{—1,1}and 0 < T < 1 GL/KM-algorithm w.h.p.
outputs L = {Uy, ..., Up}:

—-|lf|=zrt=UelL
~UEeL=|f()|=1/2

* Exercise: GL/KM + Sparse Fourier Algorithm: A

class C which is e-concentrated on at most M sets

1

can be learned using poly (M,E,n) queries

— Every large coefficient‘f(U)‘ > 1/V/M
e Corollary: S|ze -§ decision trees are learnable with
poly(n, s, —) queries

Estimating Fourier Weight via Restrictions

» Recall: E,|f},(5)?| = Xy F(SUT)?

* Lemma: ZTg]—f(S U T)*# can be estimated from
0(1/€*log1/6) random samplesw.p. 1 —§

* Zngf(S U T)z — Ez[f]lz(s)z: —
=E, 11y [Eye{_l,l}z f W, Z)XS(y)F]
= E, 11y |Byyreraay F O DXsOFO Dxs0)]]

s f(y, 2D)xsWFf(Y',2)xs(y'") isa +1 random variable
= 0(1/€*log 1/6) samples suffice to estimate

GL/KM-Algorithm

* Put all 2" subsets of [n] into a single “bucket”
* At each step:

— Select any bucket B containing 2™ sets, m > 1

— Split B into B, B, of 2™~ 1 sets each

— Estimate Fourier weight ZUG%if(U)Z up to 4 /4 for
of each B;

2
— Discard B, or B, if its weight is < %

e Output all buckets that contain a single set

GL/KM-Algorithm: Correctness

* Putall 2" subsets of [n] into a single “bucket”

* At each step:
— Select any bucket B containing 2™ sets, m > 1
— Split B into B, B, of 2™ 1 sets each

— Estimate Fourier weight ZUE,Bl,f(U)Z up to 72 /4 for each B;

2
— Discard B, or B, if its weight is < %

e Qutput all buckets that contain a single set

Correctness (assuming all estimates up to 72 /4 w.h.p):
. |f(U)| > 7 = U € L: no bucket with weight > 72 discarded
e UEL> |f(U)| > 1/2: buckets with weight < 7% /4 discarded

GL/KM-Algorithm: Complexity

Put all 2" subsets of [n] into a single “bucket”

At each step:
— Select any bucket B containing 2™ sets, m > 1
— Split B into B, B, of 2™ 1 sets each

— Estimate Fourier weight ZUE,Bl,f(U)Z up to 72 /4 for each B;

2
— Discard B, or B, if its weight is < %

Output all buckets that contain a single set

By Parseval < 4/72 active buckets at any time
Bucket can be split at most n times
At most 4n/t? steps to finish

GL/KM-Algorithm: Bucketing

Bes ={SUT:TCS{k+1,..,n}},|Brs| =2"7*
Initial bucket B 4

Split By s into Byyq,5and Byyq suk+1

Fourier weight of By ¢ = ZTg{kJrl,___,n}f(S U T)?

ZTg{kJer,n}f(S U T)? estimated via restrictions

2 T2

Estimate each up to + — with prob. 1 — —,
4 80n
lexity O (llog (2))
comp = .

2
All estimates are up to + TZ with prob. 9/10

Thanks!

