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Fourier Analysis and Learning 

• Powerful tool for PAC-style learning under uniform 
distribution over 0,1 𝑛 

• Sometimes requires queries of the form 𝒇(𝑥) 
• Works for learning many classes of functions, e.g: 

– Monotone, DNF, decision trees, low-degree polynomials  
– Small circuits, halfspaces, k-linear, juntas (depend on 

small # of variables) 
– Submodular functions (analog of convex/concave) 
– … 

• Can be extended to product distributions over 
0,1 𝑛, i.e. 𝐷 = 𝐷1 × 𝐷2 ×⋯× 𝐷𝑛 where × means 

that draws are independent  
 



Recap: Fourier Analysis 

• Functions as vectors form a vector space: 

𝒇: −1,1 𝑛 → ℝ ⇔ 𝒇 ∈ ℝ2
𝑛

 
• Inner product on functions = “correlation”: 

𝒇, 𝒈 = 2−𝑛  𝒇 𝑥 𝒈(𝑥)

𝑥∈ −1,1 𝑛

= 𝔼𝑥∼ −1,1 𝑛 𝒇 𝑥 𝒈 𝑥  

• Thm: Every function 𝒇: −1,1 → ℝ can be uniquely 
represented as a multilinear polynomial 

𝒇 𝑥1, … , 𝑥𝑛 =  𝒇 𝑺 𝝌𝑺(𝑥)

𝑺⊆,𝑛-

 

• 𝒇 𝑺  ≡ Fourier coefficient of 𝒇 on 𝑺 = 〈𝒇, 𝝌𝑺〉 

 



• 𝒇: 0,1 𝑛 → *0,1+  

• 𝑷 = class of linear functions 

• 𝑑𝑖𝑠𝑡 𝒇, 𝑷 = min
𝒈∈𝑷
 𝑑𝑖𝑠𝑡(𝑓, 𝑔) 

• 𝝐-close: 𝑑𝑖𝑠𝑡 𝒇, 𝑷 ≤ 𝝐 

Linearity Testing  
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Local Correction 

• Learning linear functions takes 𝒏 queries 

• Lem: If 𝒇 is 𝝐-close to linear function 𝝌𝑺 then for 
every 𝑥 one can compute 𝝌𝑺(𝑥) w.p. 1 − 2𝝐 as: 

– Pick 𝑦 ∼ 0,1 𝑛 

– Output 𝒇 𝑦 ⊕ 𝒇(𝑥 ⊕ 𝑦) 

• Proof: 

𝑃𝑟 𝒇 𝑦 ≠ 𝝌𝑺 𝑦 = 𝑃𝑟 𝒇 𝑥 ⊕ 𝑦 ≠ 𝝌𝑺 𝑥 ⊕ 𝑦 = 𝝐 

By union bound: 
𝑃𝑟 𝒇 𝑦 = 𝝌𝑺 𝑦 , 𝒇 𝑥 ⊕ 𝑦 = 𝝌𝑺 𝑥 ⊕ 𝑦 ≥ 1 − 2𝝐 

Then  𝒇 𝑦 ⊕ 𝒇 𝑥 ⊕ 𝑦 = 𝝌𝑺 𝑦 ⊕ 𝝌𝑺 𝑥 ⊕ 𝑦 = 𝝌𝑺(𝑥) 



Recap: PAC-style learning 

• PAC-learning under uniform distribution: for a class 
of functions 𝑪, given access to 𝒇 ∈ 𝑪 and 𝝐 find a 
hypothesis 𝒉 such that 𝑑𝑖𝑠𝑡 𝒇, 𝒉 ≤ 𝝐 

• Two query access models: 

– Random samples (𝑥, 𝒇(𝑥)), where 𝑥 ∼ −1,1 𝑛 

– Queries: (𝑥, 𝒇(𝑥)), for any 𝑥 ∈ −1,1 𝑛 

• Fourier analysis helps because of sparsity in Fourier 
spectrum 

– Low-degree concentration 

– Concentration on a small number of Fourier coefficients 

 



Fourier Analysis and Learning 

• Def (Fourier Concentration): Fourier spectrum 
of 𝒇: −1,1 𝑛 → ℝ is 𝝐-concentrated on a 
collection of subsets 𝔽 if: 

 𝒇 𝑺 2 ≥ 1 − 𝝐

𝑺⊆ 𝑛 ,𝑺∈𝔽

 

• Thm (Sparse Fourier Algorithm): Given 𝔽 on 
which 𝒇 ∶ −1,1 𝑛 → *−1,1+ is 𝝐/2-
concentrated there is an algorithm that PAC-
learns 𝒇 with 𝑂( 𝔽 log |𝔽| /𝝐) random samples 



Estimating Fourier Coefficients 

• Lemma: Given 𝑺 and 𝑂 log
1

𝜹
/𝝐2  random samples 

from 𝒇: −1,1 𝑛 → −1,1  there is an algorithm that 

gives 𝒇 (𝑺) such that with prob. ≥ 1 − 𝜹: 

𝒇 𝑺 − 𝒇 𝑺 ≤ 𝝐 

• Proof:𝒇 𝑺 = 𝔼𝑥,𝒇 𝑥 𝝌𝑺(𝑥)- 

• Given 𝑘 = 𝑂 log
1

𝜹
/𝝐2  random samples 𝑥𝑖 , 𝒇 𝑥𝑖  

• Empirical average 
1

k
×  𝒇 𝑥𝑖 𝝌𝑺(𝑥𝑖)

𝑘
𝑖  𝝐-close by a 

Chernoff bound with prob. ≥ 1 − 𝜹  



Rounding real-valued approximations 

• Lem: If 𝒇: −1,1 𝑛 → −1,1 , 𝒈: −1,1 𝑛 → ℝ 

such that 𝔼𝑥 𝒇 − 𝒈
2

2
≤ 𝝐. For 𝒉: −1,1 𝑛 →

−1,1  defined as 𝒉 𝑥 = 𝑠𝑖𝑔𝑛(𝒈(𝑥)): 
𝑑𝑖𝑠𝑡 𝒇, 𝒉 ≤ 𝝐 

• Proof: 𝒇 𝑥 ≠ 𝒈 𝑥 ⇒ 𝒇 𝑥 − 𝒈 𝑥 2 ≥ 1 

 
𝑑𝑖𝑠𝑡 𝒇, 𝒉 = Pr

x
𝒇 𝑥 ≠ 𝒉 𝑥 = 

𝔼𝑥 1𝒇 𝑥 ≠𝑠𝑖𝑔𝑛(𝒈 𝑥 ) ≤ 

𝔼𝑥 𝒇 − 𝒈
2

2
≤ 𝝐 

 

 

 



Sparse Fourier Algorithm 
• Thm (Sparse Fourier Algorithm):  

Given 𝔽 such that 𝒇 ∶ −1,1 𝑛 → *−1,1+ is 𝝐/2-concentrated 
on 𝔽 there is a Sparse Fourier Algorithm which PAC-learns 𝒇 
with 𝑂( 𝔽 log |𝔽| /𝝐) random samples. 

• For each 𝑺 ∈ 𝔽 get 𝒇 𝑺  with prob. 1 − 1/10|𝔽|:  

𝒇 𝑺 − 𝒇 𝑺 ≤ 𝝐/2 |𝔽| 

• Output: 𝒉 = 𝑠𝑖𝑔𝑛(𝒈) where 𝒈 =  𝒇 𝑺 𝝌𝑺𝑺∈𝔽  

𝒇 − 𝒈
2

2
= 𝒇− 𝒈 𝑺 𝟐

𝑺

= 

 𝒇 𝑺 − 𝒇 𝑺
2
+𝑺∈𝔽   𝒇 𝑺 2 ≤𝑺∈𝔽  

𝝐

2 |𝔽|

2

+
𝝐

2𝑺∈𝔽 ≤ 𝝐 



Low-Degree Algorithm 

• Some classes are 𝝐-concentrated on low degree 
Fourier coefficients: 𝔽 = *𝑺: 𝑺 ≤ 𝒌+, 𝒌 ≪ 𝒏 

• 𝔽 ≤ 𝑛𝒌 

• Monotone functions: 𝒌 = 𝑂( 𝑛/𝝐) 

– Learning complexity: 𝑛 𝑂(
 𝑛/𝝐)  

• Size-𝒔 decision trees: 𝒌 = 𝑂((log 𝒔)/𝝐) 

– Learning complexity: n𝑂((log 𝒔)/𝝐) 

• Depth-𝒅 decision trees: 𝒌 = 𝑂(𝒅/𝝐) 

– Learning complexity: 𝑛𝑂(𝒅/𝝐) 

 



Restrictions 

• Def: For a partition (𝑱, 𝑱 ) of [n] and 𝒛 ∈ −1,1 𝑱
 
 

let the restriction 𝒇𝑱|𝒛: −1,1
𝑱 → ℝ be 

𝒇𝑱|𝒛 𝑦 = 𝒇(𝑦, 𝒛) 

where (𝑦, 𝒛) is a string composed of 𝑦 and 𝒛. 

• Example: 

𝒎𝒊𝒏 𝑥1, 𝑥2 = −
1

2
+
1

2
𝑥1 +

1

2
𝑥2 +

1

2
𝑥1𝑥2 

𝑱 = 1 , 𝑱 = 2 , 𝒛 = 1 ⇒ 
𝒇𝑱|𝒛: −1,1 → −1,1 = 𝑥1 

 



Fourier coefficients of restrictions 

• Fourier coefficients of 𝒇𝑱|𝒛 can be obtained from the 
multilinear polynomial by subsitution 

• 𝒇 𝑱|𝒛 𝑺 =  𝒇 𝑺 ∪ 𝑻 𝝌𝑻(𝒛)𝑻⊆𝐽  

• 𝔼𝒛 𝒇 𝑱|𝒛 𝑺 = 𝒇 𝑺  

Take 𝑻 = ∅, otherwise 𝔼𝒛 𝝌𝑻 𝒛 = 0 

• 𝔼𝒛 𝒇 𝑱|𝒛 𝑺
𝟐 =  𝒇 𝑺 ∪ 𝑻 2𝑻⊆𝐽  

𝔼𝒛 𝒇 𝑱|𝒛 𝑺
𝟐 = 𝔼𝒛  𝒇 𝑺 ∪ 𝑻 𝝌𝑻 𝒛

𝑻⊆𝐽 

𝟐

=  𝒇 𝑺 ∪ 𝑻 2

𝑻⊆𝐽 

 

since 𝔼𝒛 𝝌𝑻 𝒛 𝝌𝑻′ 𝒛 = 0 

 

 



Goldreich-Levin/Kushilevitz-Mansour 

• Thm (GL/KM): Given query access to 𝒇: −1,1 𝑛 →
*−1,1+ and 0 < 𝝉 ≤ 1 GL/KM-algorithm w.h.p. 
outputs 𝐿 = *𝑈1, … , 𝑈ℓ+: 

– 𝒇 (𝑈) ≥ 𝝉 ⇒ 𝑈 ∈ 𝐿 

– 𝑈 ∈ 𝐿 ⇒ 𝒇 𝑈 ≥ 𝝉/2 

• Exercise: GL/KM + Sparse Fourier Algorithm: A 
class 𝐶 which is 𝝐-concentrated on at most M sets 
can be learned using 𝑝𝑜𝑙𝑦 M,

1

𝜖
, 𝑛  queries 

– Every large coefficient 𝒇 (𝑈) ≥ 1/ 𝑴 

• Corollary: Size-𝒔 decision trees are learnable with 
𝑝𝑜𝑙𝑦(𝑛, 𝒔,

𝟏

𝝐 
) queries 

 



Estimating Fourier Weight via Restrictions 

• Recall: 𝔼𝒛 𝒇 𝑱|𝒛 𝑺
𝟐 =  𝒇 𝑺 ∪ 𝑻 2𝑻⊆𝐽  

• Lemma:  𝒇 𝑺 ∪ 𝑻 2𝑻⊆𝐽  can be estimated from 

𝑂(1/𝝐2 log 1/𝛿) random samples w.p. 1 − 𝛿 

•  𝒇 𝑺 ∪ 𝑻 2𝑻⊆𝐽 = 𝔼𝒛 𝒇 𝑱|𝒛 𝑺
𝟐 = 

= 𝔼
𝒛∈*−1,1+𝑱

 𝔼𝒚∈*−1,1+𝑱 𝒇 𝒚, 𝒛 𝝌𝑺 𝒚
2  

= 𝔼
𝒛∈*−1,1+𝑱

 𝔼𝒚,𝒚′∈*−1,1+𝑱 𝒇 𝒚, 𝒛 𝝌𝑺 𝒚 𝒇 𝒚′, 𝒛 𝝌𝑺 𝒚′  

• 𝒇 𝒚, 𝒛 𝝌𝑺 𝒚 𝒇 𝒚′, 𝒛 𝝌𝑺 𝒚′  is a ±1 random variable 
⇒ 𝑂(1/𝝐2 log 1/𝛿) samples suffice to estimate 



GL/KM-Algorithm 

• Put all 2𝑛 subsets of ,𝑛- into a single “bucket” 

• At each step: 

– Select any bucket 𝕭 containing 2𝑚 sets, 𝑚 ≥ 1 

– Split 𝕭 into 𝕭1, 𝕭2 of 2𝑚−1 sets each 

– Estimate Fourier weight  𝒇 𝑈 2
𝑈∈𝕭𝑖

 up to 𝝉𝟐/4 for 

of each 𝕭𝑖 

– Discard 𝕭1or 𝕭2 if its weight is ≤
𝜏2

2
 

• Output all buckets that contain a single set 

 



GL/KM-Algorithm: Correctness 

• Put all 2𝑛 subsets of ,𝑛- into a single “bucket” 

• At each step: 
– Select any bucket 𝕭 containing 2𝑚 sets, 𝑚 ≥ 1 

– Split 𝕭 into 𝕭1, 𝕭2 of 2𝑚−1 sets each 

– Estimate Fourier weight  𝒇 𝑈 2
𝑈∈𝕭𝑖

 up to 𝝉𝟐/4 for each 𝕭𝑖  

– Discard 𝕭1or 𝕭2 if its weight is ≤
𝝉𝟐

2
 

• Output all buckets that contain a single set 

 

Correctness (assuming all estimates up to 𝝉𝟐/4 w.h.p): 
• 𝒇 (𝑈) ≥ 𝝉 ⇒ 𝑈 ∈ 𝐿: no bucket with weight ≥ 𝝉𝟐 discarded 

•  𝑈 ∈ 𝐿 ⇒ 𝒇 𝑈 ≥ 𝝉/2: buckets with weight ≤ 𝝉𝟐/4 discarded 

 



GL/KM-Algorithm: Complexity 

• Put all 2𝑛 subsets of ,𝑛- into a single “bucket” 

• At each step: 
– Select any bucket 𝕭 containing 2𝑚 sets, 𝑚 ≥ 1 

– Split 𝕭 into 𝕭1, 𝕭2 of 2𝑚−1 sets each 

– Estimate Fourier weight  𝒇 𝑈 2
𝑈∈𝕭𝑖

 up to 𝝉𝟐/4 for each 𝕭𝑖  

– Discard 𝕭1or 𝕭2 if its weight is ≤
𝝉𝟐

2
 

• Output all buckets that contain a single set 

 

• By Parseval ≤ 4/𝝉2 active buckets at any time 
• Bucket can be split at most 𝑛 times  
• At most 4𝑛/𝝉2 steps to finish 



GL/KM-Algorithm: Bucketing 

 

• 𝕭𝑘,𝑺 = *𝑺 ∪ T: 𝑇 ⊆ *𝑘 + 1,… , 𝑛+ +, 𝕭𝑘,𝑺 = 2
𝑛−𝑘 

• Initial bucket 𝕭0,∅ 

• Split 𝕭𝑘,𝑺  into 𝕭𝑘+1,𝑺 and 𝕭𝑘+1,𝑺∪*𝑘+1+ 

• Fourier weight of 𝕭𝑘,𝑺 =  𝒇 𝑺 ∪ 𝑻 2𝑻⊆*𝑘+1,… ,𝑛+  

•  𝒇 𝑺 ∪ 𝑻 2𝑻⊆*𝑘+1,… ,𝑛+  estimated via restrictions   

• Estimate each up to ±
𝝉𝟐

4
 with prob. 1 −

𝜏2

80𝑛
, 

complexity  𝑂
1

𝝉𝟒
log

𝑛

𝝉
  

• All estimates are up to ±
𝝉𝟐

4
 with prob.  9/10 



Thanks! 

 


